926 resultados para Nucleic acid detection tests
Resumo:
Background: Microbiological diagnostic procedures have changed significantly over the last decade. Initially the implementation of the polymerase chain reaction (PCR) resulted in improved detection tests for microbes that were difficult or even impossible to detect by conventional methods such as culture and serology, especially in community-acquired respiratory tract infections (CA-RTI). A further improvement was the development of real-time PCR, which allows end point detection and quantification, and many diagnostic laboratories have now implemented this powerful method. Objective: At present, new performant and convenient molecular tests have emerged targeting in parallel many viruses and bacteria responsible for lower and/or upper respiratory tract infections. The range of test formats and microbial agents detected is evolving very quickly and the added value of these new tests needs to be studied in terms of better use of antibiotics, better patient management, duration of hospitalization and overall costs. Conclusions: Molecular tools for a better microbial documentation of CA-RTI are now available. Controlled studies are now required to address the relevance issue of these new methods, such as, for example, the role of some newly detected respiratory viruses or of the microbial DNA load in a particular patient at a particular time. The future challenge for molecular diagnosis will be to become easy to handle, highly efficient and cost-effective, delivering rapid results with a direct impact on clinical management.
Resumo:
Medical microbiology and virology laboratories use nucleic acid tests (NAT) to detect genomic material of infectious organisms in clinical samples. Laboratories choose to perform assembled (or in-house) NAT if commercial assays are not available or if assembled NAT are more economical or accurate. One reason commercial assays are more expensive is because extensive validation is necessary before the kit is marketed, as manufacturers must accept liability for the performance of their assays, assuming their instructions are followed. On the other hand, it is a particular laboratory's responsibility to validate an assembled NAT prior to using it for testing and reporting results on human samples. There are few published guidelines for the validation of assembled NAT. One procedure that laboratories can use to establish a validation process for an assay is detailed in this document. Before validating a method, laboratories must optimise it and then document the protocol. All instruments must be calibrated and maintained throughout the testing process. The validation process involves a series of steps including: (i) testing of dilution series of positive samples to determine the limits of detection of the assay and their linearity over concentrations to be measured in quantitative NAT; (ii) establishing the day-to-day variation of the assay's performance; (iii) evaluating the sensitivity and specificity of the assay as far as practicable, along with the extent of cross-reactivity with other genomic material; and (iv) assuring the quality of assembled assays using quality control procedures that monitor the performance of reagent batches before introducing new lots of reagent for testing.
Resumo:
Nucleic acid amplification tests (NAATs) for the detection of Neisseria gonorrhoeae became available in the early 1990s. Although offering several advantages over traditional detection methods, N. gonorrhoeae NAATs do have some limitations. These include cost, risk of carryover contamination, inhibition, and inability to provide antibiotic resistance data. In addition, there are sequence-related limitations that are unique to N. gonorrhoeae NAATs. In particular, false-positive results are a major consideration. These primarily stem from the frequent horizontal genetic exchange occurring within the Neisseria genus, leading to commensal Neisseria species acquiring N. gonorrhoeae genes. Furthermore, some N. gonorrhoeae subtypes may lack specific sequences targeted by a particular NAAT. Therefore, NAAT false-negative results because of sequence variation may occur in some gonococcal populations. Overall, the N. gonorrhoeae species continues to present a considerable challenge for molecular diagnostics. The need to evaluate N. gonorrhoeae NAATs before their use in any new patient population and to educate physicians on the limitations of these tests is emphasized in this review.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.
Resumo:
Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300 nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria.
Resumo:
Immediate prevention of meningococcal disease relies in part on the prompt treatment with antibiotics of household and other close contacts of cases; however intervention with effective vaccination relies on identification of serogroup-causing strains. Parenteral antibiotic for patient with suspected meningococcal disease before hospital admission is currently recommended. Laboratory standard methods are hindered by failure to detect bacteria by this medical approach to improve patient prognosis. We assessed two polymerase chain reaction (PCR) assays to detect (crgA) and define the serogroups (siaD, orf-2, and ctrA) of Neisseria meningitidis in 120 cerebrospinal fluid (CSF) samples from positive cases (culture or antigen detection or direct smear). The PCR sensitivity for the identification of N. meningitidis was 100% (95% confidence interval, CI, 96-100%) compared to a sensitivity of 46% for culture (95% CI 37-55%), 61% for latex agglutination test (95% CI 52-70%), and 68% for Gram stain (95% CI 59-76%); PCR specificity was 97% (95% CI 82-100%). PCR correctly identified the serogroups A, B, C, W135, Y, and X in CSF samples with a sensitivity of 88% (95% CI 80-93%); the primer sets were 100% specific. The introduction of PCR-based assays shall increase laboratory confirmed cases, consequently enhancing surveillance of meningococcal disease.
Resumo:
Introduction Despite the known importance of Clostridium difficile as a nosocomial pathogen, few studies regarding Clostridium difficile infection (CDI) in Brazil have been conducted. To date, the diagnostic tests that are available on the Brazilian market for the diagnosis of CDI have not been evaluated. The aim of this study was to compare the performances of four commercial methods for the diagnosis of CDI in patients from a university hospital in Brazil. Methods Three enzyme immunoassays (EIAs) and one nucleic acid amplification test (NAAT) were evaluated against a cytotoxicity assay (CTA) and toxigenic culture (TC). Stool samples from 92 patients with suspected CDI were used in this study. Results Twenty-five (27.2%) of 92 samples were positive according to the CTA, and 23 (25%) were positive according to the TC. All EIAs and the NAAT test demonstrated sensitivities between 59 and 68% and specificities greater than 91%. Conclusions All four methods exhibited low sensitivities for the diagnosis of CDI, which could lead to a large number of false-negative results, an increased risk of cross-infection to other patients, and overtreatment with empirical antibiotics.
Resumo:
Bacteriophage-host interaction studies in biofilm structures are still challenging due to the technical limitations of traditional methods. The aim of this study was to provide a direct fluorescence in situ hybridization (FISH) method based on locked nucleic acid (LNA) probes, which targets the phage replication phase, allowing the study of population dynamics during infection. Bacteriophages specific for two biofilm-forming bacteria, Pseudomonas aeruginosa and Acinetobacter, were selected. Four LNA probes were designed and optimized for phage-specific detection and for bacterial counterstaining. To validate the method, LNA-FISH counts were compared with the traditional plaque forming unit (PFU) technique. To visualize the progression of phage infection within a biofilm, colony-biofilms were formed and infected with bacteriophages. A good correlation (r=0.707) was observed between LNA-FISH and PFU techniques. In biofilm structures, LNA-FISH provided a good discrimination of the infected cells and also allowed the assessment of the spatial distribution of infected and non-infected populations.
Resumo:
Les POCT (point of care tests) ont un grand potentiel d'utilisation en médecine infectieuse ambulatoire grâce à leur rapidité d'exécution, leur impact sur l'administration d'antibiotiques et sur le diagnostic de certaines maladies transmissibles. Certains tests sont utilisés depuis plusieurs années (détection de Streptococcus pyogenes lors d'angine, anticorps anti-VIH, antigène urinaire de S. pneumoniae, antigène de Plasmodium falciparum). De nouvelles indications concernent les infections respiratoires, les diarrhées infantiles (rotavirus, E. coli entérohémorragique) et les infections sexuellement transmissibles. Des POCT, basés sur la détection d'acides nucléiques, viennent d'être introduits (streptocoque du groupe B chez la femme enceinte avant l'accouchement et la détection du portage de staphylocoque doré résistant à la méticilline). POCT have a great potential in ambulatory infectious diseases diagnosis, due to their impact on antibiotic administration and on communicable diseases prevention. Some are in use for long (S. pyogenes antigen, HIV antibodies) or short time (S. pneumoniae antigen, P. falciparum). The additional major indications will be community-acquired lower respiratory tract infections, infectious diarrhoea in children (rotavirus, enterotoxigenic E. coli), and hopefully sexually transmitted infections. Easy to use, these tests based on antigen-antibody reaction allow a rapid diagnosis in less than one hour; the new generation of POCT relying on nucleic acid detection are just introduced in practice (detection of GBS in pregnant women, carriage of MRSA), and will be extended to many pathogens
Resumo:
BACKGROUND: A new diagnostic system, called one-step nucleic acid amplification (OSNA), has recently been designed to detect cytokeratin 19 mRNA as a surrogate for lymph node metastases. The objective of this prospective investigation was to compare the performance of OSNA with both standard hematoxylin and eosin (H&E) analysis and intensive histopathology in the detection of colon cancer lymph node metastases. METHODS: In total, 313 lymph nodes from 22 consecutive patients with stage I, II, and III colon cancer were assessed. Half of each lymph node was analyzed initially by H&E followed by an intensive histologic workup (5 levels of H&E and immunohistochemistry analyses, the gold standard for the assessment of sensitivity/specificity of OSNA), and the other half was analyzed using OSNA. RESULTS: OSNA was more sensitive in detecting small lymph node tumor infiltrates compared with H&E (11 results were OSNA positive/H&E negative). Compared with intensive histopathology, OSNA had 94.5% sensitivity, 97.6% specificity, and a concordance rate of 97.1%. OSNA resulted in an upstaging of 2 of 13 patients (15.3%) with lymph node-negative colon cancer after standard H&E examination. CONCLUSIONS: OSNA appeared to be a powerful and promising molecular tool for the detection of lymph node metastases in patients with colon cancer. OSNA had similar performance in the detection of lymph node metastases compared with intensive histopathologic investigations and appeared to be superior to standard histology with H&E. Most important, the authors concluded that OSNA may lead to a potential upstaging of >15% of patients with colon cancer.
Resumo:
Introduction: Approximately one fifth of stage I and II colon cancer patients will suffer from recurrent disease. This is partly due to the presence of small nodal tumour infiltrates, which are undetected by standard histopathology using Haematoxylin & Eosin (H&E) staining on one slice and thus may not receive beneficial adjuvant therapy. A new diagnostic, semi-automatic system, called one-step nucleic acid amplification (OSNA), was recently designed for the detection of cytokeratin 19 (CK19) mRNA as a surrogate for lymph node metastases. The objective of the present investigation was to compare the performance of OSNA with both standard H&E as well as intensive histopathologic analyses in the detection of colon cancer lymph node micro- and macro-metastases.Methods: In this prospective study 313 lymph nodes from 22 consecutive stage I - III colon cancer patients were assessed. Half of each lymph node was analysed initially based on one slice of H&E followed by an intensive histologic work-up (5 levels of H&E and immuno-histochemistry staining for each slice), the other half was analysed using OSNA.Results: All OSNA results were available after less than 40 minutes. Fifty-one lymph nodes were positive and 246 lymph nodes negative with both OSNA and standard H&E. OSNA was more sensitive to detect small nodal tumor infiltrates compared to H&E (11 OSNA pos. /H&E neg.). Compared to intensive histopathologic analyses, OSNA had a sensitivity of 94.5% and a specificity of 97.6% to detect lymph node micro- and macro-metastases with a concordance rate of 97.1%. An upstaging due to OSNA was found in 2/13 (15.3%) initially node negative colon cancer patients.Conclusion: OSNA appears to be a powerful and promising molecular tool for the detection of lymph node macro- and micro-metastases in colon cancer patients. OSNA has a similar performance in the detection of micro- and macro-metastases compared to intensive histopathologic investigations and appears to be superior to standard histology with H&E. Since the use of OSNA allows the analysis of the whole lymph node, the problem of sampling bias and undetected tumor deposits due to uninvestigated material will be overcome in the future and OSNA may thus improve staging in colon cancer patients. It is hoped that this improved staging will lead to better patient selection for adjuvant therapy and consecutively improved local and distant control as well as better overall survival.