977 resultados para Nuclear transport


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Xanthomonas axonopodis pv. citri utilizes the type III effector protein PthA to modulate host transcription to promote citrus canker. PthA proteins belong to the AvrBs3/PthA family and carry a domain comprising tandem repeats of 34 amino acids that mediates protein-protein and protein-DNA interactions. We show here that variants of PthAs from a single bacterial strain localize to the nucleus of plant cells and form homo- and heterodimers through the association of their repeat regions. We hypothesize that the PthA variants might also interact with distinct host targets. Here, in addition to the interaction with alpha-importin, known to mediate the nuclear import of AvrBs3, we describe new interactions of PthAs with citrus proteins involved in protein folding and K63-linked ubiquitination. PthAs 2 and 3 preferentially interact with a citrus cyclophilin (Cyp) and with TDX, a tetratricopeptide domain-containing thioredoxin. In addition, PthAs 2 and 3, but not 1 and 4, interact with the ubiquitin-conjugating enzyme complex formed by Ubc13 and ubiquitin-conjugating enzyme variant (Uev), required for K63-linked ubiquitination and DNA repair. We show that Cyp, TDX and Uev interact with each other, and that Cyp and Uev localize to the nucleus of plant cells. Furthermore, the citrus Ubc13 and Uev proteins complement the DNA repair phenotype of the yeast Delta ubc13 and Delta mms2/uev1a mutants, strongly indicating that they are also involved in K63-linked ubiquitination and DNA repair. Notably, PthA 2 affects the growth of yeast cells in the presence of a DNA damage agent, suggesting that it inhibits K63-linked ubiquitination required for DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ran is a small GTPase that is essential for nuclear transport, mRNA processing, maintenance of structural integrity of nuclei, and cell cycle control. RanBP1 is a highly conserved Ran guanine nucleotide dissociation inhibitor. We sought to use Xenopus egg extracts for the development of an in vitro assay for RanBP1 activity in nuclear assembly, protein import, and DNA replication. Surprisingly, when we used anti-RanBP1 antibodies to immunodeplete RanBP1 from Xenopus egg extracts, we found that the extracts were also depleted of RCC1, Ran’s guanine nucleotide exchange factor, suggesting that these proteins form a stable complex. In contrast to previous observations using extracts that had been depleted of RCC1 only, extracts lacking both RanBP1 and RCC1 (codepleted extracts) did not exhibit defects in assays of nuclear assembly, nuclear transport, or DNA replication. Addition of either recombinant RanBP1 or RCC1 to codepleted extracts to restore only one of the depleted proteins caused abnormal nuclear assembly and inhibited nuclear transport and DNA replication in a manner that could be rescued by further addition of RCC1 or RanBP1, respectively. Exogenous mutant Ran proteins could partially rescue nuclear function in extracts without RanBP1 or without RCC1, in a manner that was correlated with their nucleotide binding state. These results suggest that little RanBP1 or RCC1 is required for nuclear assembly, nuclear import, or DNA replication in the absence of the other protein. The results further suggest that the balance of GTP- and GDP-Ran is critical for proper nuclear assembly and function in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to the well-characterized GTP-dependent nuclear transport observed in permeabilized cells, we detected a mode of nuclear transport that was GTP-independent at elevated cytoplasmic calcium concentrations. Nuclear transport under these conditions was blocked by calmodulin inhibitors. Recombinant calmodulin restored ATP-dependent nuclear transport in the absence of cytosol. Calmodulin-dependent transport was inhibited by wheat germ agglutinin consistent with transport proceeding through nuclear pores. We propose that release of intracellular calcium stores upon cell activation inhibits GTP-dependent nuclear transport; the elevated cytosolic calcium then acts through calmodulin to stimulate the novel GTP-independent mode of import.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of permeabilized cell models to study nuclear protein import has led to the identification of cytosolic components of the import machinery, including the NLS receptor, p97, Ran/TC4, and nuclear transport factor 2 (NTF2). These proteins are required to reconstitute docking of transport ligand at the nuclear pore complex and subsequent translocation through the nuclear pore. However, a detailed molecular understanding of how these factors mediate protein import is lacking. Here we describe the results of solution and solid phase binding assays, which demonstrate that the small GTPase Ran/TC4 interacts directly with the cytosolic transport factors p97 and NTF2. By preloading recombinant Ran/TC4 with [gamma-32P]GTP or [3H]GDP, we show that the interactions with p97 and NTF2 are specific for the GTP- and GDP-bound forms, respectively. These data together with previous studies lead us to suggest that the interaction of the GTP-bound form of Ran/TC4 with p97 is linked to an early step in the nuclear protein import pathway and that the association of the GDP-bound form of Ran/TC4 with NTF2 helps define vectorial transport.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Systemic acquired resistance (SAR) is a broad-spectrum resistance in plants that involves the upregulation of a battery of pathogenesis-related (PR) genes. NPR1 is a key regulator in the signal transduction pathway that leads to SAR. Mutations in NPR1 result in a failure to induce PR genes in systemic tissues and a heightened susceptibility to pathogen infection, whereas overexpression of the NPR1 protein leads to increased induction of the PR genes and enhanced disease resistance. We analyzed the subcellular localization of NPR1 to gain insight into the mechanism by which this protein regulates SAR. An NPR1–green fluorescent protein fusion protein, which functions the same as the endogenous NPR1 protein, was shown to accumulate in the nucleus in response to activators of SAR. To control the nuclear transport of NPR1, we made a fusion of NPR1 with the glucocorticoid receptor hormone binding domain. Using this steroid-inducible system, we clearly demonstrate that nuclear localization of NPR1 is essential for its activity in inducing PR genes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nuclear import of proteins is mediated by the nuclear pore complexes in the nuclear envelope and requires the presence of a nuclear localization signal (NLS) on the karyophilic protein. In this paper, we describe studies with a monoclonal antibody, Mab E2, which recognizes a class of nuclear pore proteins of 60-76 kDa with a common phosphorylated epitope on rat nuclear envelopes. The Mab Ea-reactive proteins fractionated with the relatively insoluble pore complex-containing component of the envelope and gave a finely punctate pattern of nuclear staining in immunofluorescence assays. The antibody did not bind to any cytosolic proteins. Mab E2 inhibited the interaction of a simian virus 40 large T antigen NLS peptide with a specific 60-kDa NLS-binding protein from rat nuclear envelopes in photoaffinity labeling experiments. The antibody blocked the nuclear import of NLS-albumin conjugates in an in vitro nuclear transport assay with digitonin-permeabilized cells, but did not affect passive diffusion of a small nonnuclear protein, lysozyme, across the pore. Mab E2 may inhibit protein transport by directly interacting with the 60-kDa NLS-binding protein, thereby blocking signal-mediated nuclear import across the nuclear pore complex. (C) 1994 Academic Press, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reversible phosphorylation of nuclear proteins is required for both DNA replication and entry into mitosis. Consequently, most cyclin-dependent kinase (Cdk)/cyclin complexes are localized to the nucleus when active. Although our understanding of nuclear transport processes has been greatly enhanced by the recent identification of nuclear targeting sequences and soluble nuclear import factors with which they interact, the mechanisms used to target Cdk/cyclin complexes to the nucleus remain obscure; this is in part because these proteins lack obvious nuclear localization sequences. To elucidate the molecular mechanisms responsible for Cdk/cyclin transport, we examined nuclear import of fluorescent Cdk2/cyclin E and Cdc2/cyclin B1 complexes in digitonin-permeabilized mammalian cells and also examined potential physical interactions between these Cdks, cyclins, and soluble import factors. We found that the nuclear import machinery recognizes these Cdk/cyclin complexes through direct interactions with the cyclin component. Surprisingly, cyclins E and B1 are imported into nuclei via distinct mechanisms. Cyclin E behaves like a classical basic nuclear localization sequence-containing protein, binding to the alpha adaptor subunit of the importin-alpha/beta heterodimer. In contrast, cyclin B1 is imported via a direct interaction with a site in the NH2 terminus of importin-beta that is distinct from that used to bind importin-alpha.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ran is a small ras-related GTPase that controls the nucleocytoplasmic exchange of macromolecules across the nuclear envelope. It binds to chromatin early during nuclear formation and has important roles during the eukaryotic cell cycle, where it regulates mitotic spindle assembly, nuclear envelope formation and cell cycle checkpoint control. Like other GTPases, Ran relies on the cycling between GTP-bound and GDP-bound conformations to interact with effector proteins and regulate these processes. In nucleocytoplasmic transport, Ran shuttles across the nuclear envelope through nuclear pores. It is concentrated in the nucleus by an active import mechanism where it generates a high concentration of RanGTP by nucleotide exchange. It controls the assembly and disassembly of a range of complexes that are formed between Ran-binding proteins and cellular cargo to maintain rapid nuclear transport. Ran also has been identified as an essential protein in nuclear envelope formation in eukaryotes. This mechanism is dependent on importin-β, which regulates the assembly of further complexes important in this process, such as Nup107–Nup160. A strong body of evidence is emerging implicating Ran as a key protein in the metastatic progression of cancer. Ran is overexpressed in a range of tumors, such as breast and renal, and these perturbed levels are associated with local invasion, metastasis and reduced patient survival. Furthermore, tumors with oncogenic KRAS or PIK3CA mutations are addicted to Ran expression, which yields exciting future therapeutic opportunities

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The intracellular distribution of RNAs depends on interactions of cis-acting nuclear export elements or nuclear retention elements with trans-acting nuclear transport or retention factors. To learn about the relationship between export and retention, we isolated RNAs that are exported from nuclei of Xenopus laevis oocytes even when most RNA export is blocked by an inhibitor of Ran-dependent nucleocytoplasmic transport, the Matrix protein of vesicular stomatitis virus. Export of the selected RNAs is saturable and specific. When present in chimeric RNAs, the selected sequences acted like nuclear export elements in promoting efficient export of RNAs that otherwise are not exported; the pathway used for export of these chimeric RNAs is that used for the selected RNAs alone. However, these chimeric RNAs, unlike the selected RNAs, were not exported in the presence of Matrix protein; thus, the nonselected sequences can cause retention of the selected RNA sequences under conditions of impaired nucleocytoplasmic transport. We propose that most RNAs are transiently immobilized in the nucleus and that release of these RNAs is an essential and early step in export. Release correlates with functional Ran-dependent transport, and the lack of export of chimeric RNAs may result from interference with the Ran system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The sterol regulatory element–binding protein-2 (SREBP-2) is produced as a large precursor molecule attached to the endoplasmic reticulum membrane. In response to the sterol depletion, the N-terminal segment of the precursor, which contains a basic helix-loop-helix–leucine zipper domain, is released by two sequential cleavages and is translocated to the nucleus, where it activates the transcription of target genes. The data herein show that released SREBP-2 uses a distinct nuclear transport pathway, which is mediated by importin β. The mature form of SREBP-2 is actively transported into the nucleus when injected into the cell cytoplasm. SREBP-2 binds directly to importin β in the absence of importin α. Ran-GTP but not Ran-GDP causes the dissociation of the SREBP-2–importin β complex. G19VRan-GTP inhibits the nuclear import of SREBP-2 in living cells. In the permeabilized cell in vitro transport system, nuclear import of SREBP-2 is reconstituted only by importin β in conjunction with Ran and its interacting protein p10/NTF2. We further demonstrate that the helix-loop-helix–leucine zipper motif of SREBP-2 contains a novel type of nuclear localization signal, which binds directly to importin β.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nuclear pore complexes (NPCs) are large proteinaceous portals for exchanging macromolecules between the nucleus and the cytoplasm. Revealing how this transport apparatus is assembled will be critical for understanding the nuclear transport mechanism. To address this issue and to identify factors that regulate NPC formation and dynamics, a novel fluorescence-based strategy was used. This approach is based on the functional tagging of NPC proteins with the green fluorescent protein (GFP), and the hypothesis that NPC assembly mutants will have distinct GFP-NPC signals as compared with wild-type (wt) cells. By fluorescence-activated cell sorting for cells with low GFP signal from a population of mutagenized cells expressing GFP-Nup49p, three complementation groups were identified: two correspond to mutant nup120 and gle2 alleles that result in clusters of NPCs. Interestingly, a third group was a novel temperature-sensitive allele of nup57. The lowered GFP-Nup49p incorporation in the nup57-E17 cells resulted in a decreased fluorescence level, which was due in part to a sharply diminished interaction between the carboxy-terminal truncated nup57pE17 and wt Nup49p. Interestingly, the nup57-E17 mutant also affected the incorporation of a specific subset of other nucleoporins into the NPC. Decreased levels of NPC-associated Nsp1p and Nup116p were observed. In contrast, the localizations of Nic96p, Nup82p, Nup159p, Nup145p, and Pom152p were not markedly diminished. Coincidentally, nuclear import capacity was inhibited. Taken together, the identification of such mutants with specific perturbations of NPC structure validates this fluorescence-based strategy as a powerful approach for providing insight into the mechanism of NPC biogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Proteins are transported into and out of the cell nucleus via specific signals. The two best-studied nuclear transport processes are mediated either by classical nuclear localization signals or nuclear export signals. There also are shuttling sequences that direct the bidirectional transport of RNA-binding proteins. Two examples are the M9 sequence in heterogeneous nuclear ribonucleoprotein A1 and the heterogeneous nuclear ribonucleoprotein K shuttling domain (KNS) sequence in heterogeneous nuclear ribonucleoprotein K, both of which appear to contribute importantly to the export of mRNA to the cytoplasm. HuR is an RNA-binding protein that can stabilize labile mRNAs containing AU-rich elements in their 3′ untranslated regions and has been shown to shuttle between the nucleus and cytoplasm (18, 19). We have identified in HuR a shuttling sequence that also possess transcription-dependent nuclear localization signal activity. We propose that HuR first may bind AU-rich element-containing mRNAs in the nucleus and then escort them through the nuclear pore, providing protection during and after export to the cytoplasmic compartment.