984 resultados para Nuclear Export Signal
Resumo:
The anti-idiotype approach is based on the assumption that an antibody specific for a receptor-binding domain of a ligand could be structurally related to the receptor. Therefore, a structural mimic of a receptor-binding domain, selected with an anti-ligand antibody, might be a functional substrate for the receptor. This hypothesis was addressed here by generating antibodies recognizing the Rev-nuclear export signal (NES). A functional NES is required for active export, presumably by interacting directly or indirectly with the nuclear pore complex. Anti-NES antibodies were used to isolate RNA mimics of the NES peptide from combinatorial RNA libraries. The RNA-mimics are exported actively, block Rev-dependent export of a reporter RNA, and inhibit cap-dependent U1 snRNA export in Xenopus oocytes, properties previously reported for NES-peptide conjugates.
Resumo:
Leucine-rich nuclear export signals (NESs) are recognized by the NES receptor exportin 1 and are central to the export of multiple shuttling proteins and RNAs. The export of messenger RNA in vertebrates was, however, thought to occur by a different pathway, because inhibition by injection of a synthetic Rev NES conjugate could not be demonstrated. Here we find that peptide conjugates composed of the NES of either protein kinase A inhibitor protein (PKI) or the HIV-1 Rev protein, when coupled to human serum albumin, are potent inhibitors of mRNA and small nuclear RNA export. These results provide direct evidence that mRNA export in vertebrates depends on interactions between an NES and its cognate NES receptors. PKI NES conjugates are significantly more efficient at inhibiting RNA export than are REV NES conjugates, indicating that different NESs may have different abilities to promote protein and RNA export. Surprisingly, an expected control conjugate containing the mutant Rev NES sequence M10 strongly inhibited the export of intronless dihydrofolate reductase mRNA. Nuclear injection of NES peptide conjugates led to mislocalization to the nucleus of 10–20% of the cytoplasmic Ran GTPase-binding protein (RanBP1) indicating that RanBP1 shuttles between the nucleus and the cytoplasm via an NES pathway. These results demonstrate that in vertebrates the export of mRNA, like that of small nuclear RNA, 5S rRNA, and transport factors such as RanBP1, employs NES-mediated molecular machinery.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) Rev protein is required for nuclear export of late HIV-1 mRNAs. This function is dependent on the mutationally defined Rev activation domain, which also forms a potent nuclear export signal. Transcription factor IIIA (TFIIIA) binds to 5S rRNA transcripts and this interaction has been proposed to play a role in the efficient nuclear export of 5S rRNA in amphibian oocytes. Here it is reported that amphibian TFIIIA proteins contain a sequence element with homology to the Rev activation domain that effectively substitutes for this domain in inducing the nuclear export of late HIV-1 mRNAs. It is further demonstrated that this TFIIIA sequence element functions as a protein nuclear export signal in both human cells and frog oocytes. Thus, this shared protein motif may play an analogous role in mediating the nuclear export of both late HIV-1 RNAs and 5S rRNA transcripts.
Resumo:
The leucine-rich nuclear export signal (NES) is used by a variety of proteins to facilitate their delivery from the nucleus to the cytoplasm. One of the best-studied examples, protein kinase inhibitor (PKI), binds to the catalytic subunit of protein kinase A in the nucleus and mediates its rapid export to the cytoplasm. We developed a permeabilized cell assay that reconstitutes nuclear export mediated by PKI, and we used it to characterize the cytosolic factors required for this process. The two-step assay involves an import phase and an export phase, and quantitation is achieved by digital fluorescence microscopy. During the import phase, a fluorescent derivative of streptavidin is imported into the nuclei of digitonin-permeabilized HeLa cells. During the export phase, biotinylated PKI diffuses into the nucleus, binds to fluorescent streptavidin, and mediates export of the complex to the cytoplasm. Nuclear export of the PKI complex is cytosol dependent and can be stimulated by addition of the purified NES receptor, Crm1. HeLa cell cytosol treated with N-ethylmaleimide (NEM) or phenyl-Sepharose to inactivate or deplete Crm1, respectively, is still fully active in the PKI export assay. Significantly, the export activity can be depleted from cytosol by preadsorption with a protein conjugate that contains a functional NES. These data indicate that cytosol contains an export activity that is distinct from Crm1 and is likely to correspond to an NES receptor.
Resumo:
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin β-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.
Resumo:
The Rev protein of HIV-1 is essential for the nuclear export of incompletely spliced viral mRNAs. This action depends on the mutationally defined Rev activation domain, which both binds the nucleoporin-like human cellular cofactor Rab/hRIP and also functions as a nuclear export signal. Protein kinase inhibitor alpha (PKI) also contains a potent nuclear export signal. However, PKI plays no role in nuclear RNA export and instead induces the nuclear export of a specific protein target, the catalytic subunit of cAMP-dependent protein kinase. Here, it is demonstrated that the nuclear export signal of PKI not only binds the Rab/hRIP cofactor specifically but also can effectively substitute for the Rev activation domain in mediating the nuclear export of HIV-1 mRNAs. We conclude that HIV-1 Rev and PKI act through an identical nuclear export pathway and that Rev, rather than using a dedicated RNA export pathway, is instead acting as an adaptor that allows viral mRNAs to access a cellular protein export pathway.
Resumo:
Rapid redistribution of STAT subcellular localization is an essential feature of cytokine signaling. To elucidate the molecular basis of STAT3 function, which plays a critical role in controlling innate immune responses in vivo, we initiated studies to determine the mechanisms controlling STAT3 nuclear trafficking. We found that STAT3 is transported to the nucleus in the absence of cytokine treatment, as judged by indirect immunofluorescence studies in the presence of leptomycin B, an inhibitor of CRM1-dependent nuclear export, suggesting that the non-phosphorylated STAT3 protein contains a functional nuclear import signal. An isoform lacking the STAT3 N-terminal domain (Δ133STAT3) retains the ability to undergo constitutive nuclear localization, indicating that this region is not essential for cytokine-independent nuclear import. Δ133STAT3 is also transported to the nucleus following stimulation with interleukin-6 (IL-6). Interestingly, IL-6-dependent tyrosine phosphorylation of Δ133STAT3 appears to be prolonged and the nuclear export of the protein delayed in cells expressing endogenous STAT3, consistent with defective Δ133STAT3 dephosphorylation. Endogenous STAT3 does not promote the nuclear export of Δ133STAT3, although dimerization between endogenous Stat3 and Δ133STAT3 is detected readily. Thus, the STAT3 N-terminal domain is not required for dimerization with full-length STAT3, yet appears to play a role in proper export of Stat3 from the nucleus following cytokine stimulation. STAT3-deficient cells reconstituted with Δ133STAT3 show enhanced and prolonged Stat1 signaling in response to IL-6, suggesting that induction of the STAT3-dependent negative regulator SOCS3 is impaired. In fact, Δ133STAT3 fails to induce SOCS3 mRNA efficiently. These studies collectively indicate that the STAT3 N-terminal region may be important for IL-6-dependent target gene activation and nuclear dephosphorylation, while dispensable for nuclear import. STAT3 is an oncogene. STAT3 is constitutively activated in primary tumors of many types. Thus far, research in the design of STAT3 protein inhibitors has focused on the SH2 and DNA-binding domains of STAT3. Interference with these domains eliminates all signaling through STAT3. If the N-terminal domain is involved in tetramerization on a subset of target genes, inhibition of this region may lead to a more selective inhibition of some STAT3 functions while leaving others intact. ^
Resumo:
Yeast cells mutated in YRB2, which encodes a nuclear protein with similarity to other Ran-binding proteins, fail to export nuclear export signal (NES)-containing proteins including HIV Rev out of the nucleus. Unlike Xpo1p/Crm1p/exportin, an NES receptor, Yrb2p does not shuttle between the nucleus and the cytoplasm but instead remains inside the nucleus. However, by both biochemical and genetic criteria, Yrb2p interacts with Xpo1p and not with other members of the importin/karyopherin β superfamily. Moreover, the Yrb2p region containing nucleoporin-like FG repeats is important for NES-mediated protein export. Taken together, these data suggest that Yrb2p acts inside the nucleus to mediate the action of Xpo1p in at least one of several nuclear export pathways.
Resumo:
Budding yeast adjusts to increases in external osmolarity via a specific mitogen-activated protein kinase signal pathway, the high-osmolarity glycerol response (HOG) pathway. Studies with a functional Hog1–green fluorescent protein (GFP) fusion reveal that even under nonstress conditions the mitogen-activated protein kinase Hog1 cycles between cytoplasmic and nuclear compartments. The basal distribution of the protein seems independent of its activator, Pbs2, and independent of its phosphorylation status. Upon osmotic challenge, the Hog1–GFP fusion becomes rapidly concentrated in the nucleus from which it is reexported after return to an iso-osmotic environment or after adaptation to high osmolarity. The preconditions and kinetics of increased nuclear localization correlate with those found for the dual phosphorylation of Hog1–GFP. The duration of Hog1 nuclear residence is modulated by the presence of the general stress activators Msn2 and Msn4. Reexport of Hog1 to the cytoplasm does not require de novo protein synthesis but depends on Hog1 kinase activity. Thus, at least three different mechanisms contribute to the intracellular distribution pattern of Hog1: phosphorylation-dependent nuclear accumulation, retention by nuclear targets, and a kinase-induced export.
Resumo:
Various proteins with different biological activities have been observed to be translocated from the nucleus to the cytoplasm in an energy- and signal-dependent manner in eukaryotic cells. This nuclear export is directed by nuclear export signals (NESs), typically characterized by hydrophobic, primarily leucine, amino acid residues. Moreover, it has been shown that CRM1/exportin 1 is an export receptor for leucine-rich NESs. However, additional NES-interacting proteins have been described. In particular, eukaryotic initiation factor 5A (eIF-5A) has been shown to be a critical cellular cofactor for the nuclear export of the HIV type 1 (HIV-1) Rev trans-activator protein. In this study we compared the nuclear export activity of NESs of different origin. Microinjection of export substrates into the nucleus of somatic cells in combination with specific inhibitors indicated that specific nuclear export pathways exist for different NES-containing proteins. In particular, inhibition of eIF-5A blocked the nuclear export of NESs derived from the HIV-1 Rev and human T cell leukemia virus type I Rex trans-activators, whereas nucleocytoplasmic translocation of the protein kinase inhibitor-NES was unaffected. In contrast, however, inhibition of CRM1/exportin 1 blocked the nuclear export of all NES-containing proteins investigated. Our data confirm that CRM1/exportin 1 is a general export receptor for leucine-rich NESs and suggest that eIF-5A acts either upstream of CRM1/exportin 1 or forms a complex with the NES and CRM1/exportin 1 in the nucleocytoplasmic translocation of the HIV-1 Rev and human T cell leukemia virus type I Rex RNA export factors.
Resumo:
Signal transducer and activator of transcription (Stat) proteins are latent transcription factors that reside in the cytoplasm before activation. On cytokine-induced tyrosine phosphorylation, these molecules dimerize and accumulate transiently in the nucleus. No specific signals mediating these processes have been identified to date. In this report, we examine the nuclear export of Stat1. We find that treatment of cells with the export inhibitor leptomycin B does not affect steady-state localization of Stat1 but impedes nuclear export after IFNγ-induced nuclear accumulation. We identify a conserved leucine-rich helical segment in the coiled-coil domain of Stat1, which is responsible for the efficient nuclear export of this protein. Mutation of two hallmark leucines within this segment greatly attenuate the back transport of Stat1 in the cytoplasm. When fused to a carrier protein, the Stat1 export sequence can mediate nuclear export after intranuclear microinjection. We show that prolonging the nuclear presence of Stat1 by inhibiting nuclear export reduces the transcriptional response to stimulation with IFNγ. These data suggest that Stats are actively exported from the nucleus via several separate pathways and link this activity to transcriptional activation.
Resumo:
The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.
Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.
Resumo:
Activation of the Cyclin B/Cdc2 kinase complex triggers entry into mitosis in all eukaryotic cells. Cyclin B1 localization changes dramatically during the cell cycle, precipitously transiting from the cytoplasm to the nucleus at the beginning of mitosis. Presumably, this relocalization promotes the phosphorylation of nuclear targets critical for chromatin condensation and nuclear envelope breakdown. We show here that the previously characterized cytoplasmic retention sequence of Cyclin B1, responsible for its interphase cytoplasmic localization, is actually an autonomous nuclear export sequence, capable of directing nuclear export of a heterologous protein, and able to bind specifically to the recently identified export mediator, CRM1. We propose that the observed cytoplasmic localization of Cyclin B1 during interphase reflects the equilibrium between ongoing nuclear import and rapid CRM1-mediated export. In support of this hypothesis, we found that treatment of cells with leptomycin B, which disrupted Cyclin B1-CRM1 interactions, led to a marked nuclear accumulation of Cyclin B1. In mitosis, Cyclin B1 undergoes phosphorylation at several sites, a subset of which have been proposed to play a role in Cyclin B1 accumulation in the nucleus. Both CRM1 binding and the ability to direct nuclear export were affected by mutation of these phosphorylation sites; thus, we propose that Cyclin B1 phosphorylation at the G2/M transition prevents its interaction with CRM1, thereby reducing nuclear export and facilitating nuclear accumulation.
Resumo:
Unlike nuclear localization signals, there is no obvious consensus sequence for the targeting of proteins to the nucleolus. The nucleolus is a dynamic subnuclear structure which is crucial to the normal operation of the eukaryotic cell. Studying nucleolar trafficking signals is problematic as many nucleolar retention signals (NoRSs) are part of classical nuclear localization signals (NLSs). In addition, there is no known consensus signal with which to inform a study. The avian infectious bronchitis virus (IBV), coronavirus nucleocapsid (N) protein, localizes to the cytoplasm and the nucleolus. Mutagenesis was used to delineate a novel eight amino acid motif that was necessary and sufficient for nucleolar retention of N protein and colocalize with nucleolin and fibrillarin. Additionally, a classical nuclear export signal (NES) functioned to direct N protein to the cytoplasm. Comparison of the coronavirus NoRSs with known cellular and other viral NoRSs revealed that these motifs have conserved arginine residues. Molecular modelling, using the solution structure of severe acute respiratory (SARS) coronavirus N-protein, revealed that this motif is available for interaction with cellular factors which may mediate nucleolar localization. We hypothesise that the N-protein uses these signals to traffic to and from the nucleolus and the cytoplasm.