971 resultados para Northward shift


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The latitudinal position of the southern westerlies has been suggested to be a key parameter for the climate on Earth. According to the general notion, the southern westerlies were shifted equatorward during the global Last Glacial Maximum (LGM: ~24–18 ka), resulting in reduced deep ocean ventilation, accumulation of old dissolved carbon, and low atmospheric CO2 concentrations. In order to test this notion, we applied surface exposure dating on moraines in the southern Central Andes, where glacial mass balances are particularly sensitive to changes in precipitation, i.e. to the latitudinal position of the westerlies. Our results provide robust evidence that the maximum glaciation occurred already at ~39 ka, significantly predating the global LGM. This questions the role of the westerlies for atmospheric CO2, and it highlights our limited understanding of the forcings of atmospheric circulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We reconstructed Middle Pleistocene surface hydrography in the western South Atlantic based on planktonic foraminiferal assemblages, modern analog technique and Globorotalia truncatulinoides isotopic ratios of core SP1251 (38 degrees 29.7`S / 53 degrees 40.7`W / 3400 m water depth). Biostratigraphic analysis suggests that sediments were deposited between 0.3 and 0.12 Ma and therefore correlate to Marine Isotopic Stage 6 or 8. Faunal assemblage-based winter and summer SST estimates suggest that the western South Atlantic at 38 degrees S was 4-6 degrees C colder than at present, within the expected range for a glacial interval. High relative abundances of subantarctic species, particularly the dominance of Neogloboquadrina pachyderma (left), support lower than present SSTs throughout the recorded period. The oxygen isotopic composition of G. truncatulinoides suggests a northward shift of the Brazil-Malvinas Confluence Zone and of the associated mid-latitude frontal system during this Middle Pleistocene cold period, and a stronger than present influence of superficial subantarctic waters and lowering in SSTs at our core site during the recorded Middle Pleistocene glacial.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquest projecte s’ha estudiat la relació entre els canvis en les temperatures superficials de l’Oceà Atlàntic i els canvis en la circulació atmosfèrica en el segle XX. Concretament s’han analitzat dos períodes de estudi: el primer des del 1940 al 1960 i el segon des del 1980 fins al 2000. S’ha posat especial interès en les anomalies en les temperatures superficials del mar en la regió tropical de l’Oceà Atlàntic i la possible interconnexió amb els canvis climàtics observats i predits. Per a la realització de l’estudi s’han dut a terme una sèrie d’experiments utilitzant el model climàtic elaborat a la universitat d’UCLA (UCLA‐AGCM model). Els resultats obtinguts han estat analitzats en forma de mapes i figures per a cada variable d’estudi. També s’ha fet una comparació entre els resultats obtinguts i altres trobats en altres treballs publicats sobre el mateix tema de recerca. Els resultats obtinguts són molt amplis i poden tenir diverses interpretacions. Tot i així algunes de les conclusions a les quals s’ha arribat són: les diferències més significatives per a les variables estudiades i trobades a partir dels resultats obtinguts del model per als dos períodes d’estudi són en els mesos d’hivern i a la zona dels tròpics; concretament a parts del nord de sud Amèrica i a parts del nord d’Àfrica. S’han trobat també canvis significatius en els patrons de precipitació sobre aquestes mateixes zones. També s’ha observant un moviment cap al nord de la zona d’interconvergència tropical i pot ser degut a l’anòmal gradient trobat a la zona equatorial en les temperatures superficial de l’Oceà. Tot i així per a una definitiva discussió i conclusions sobre els resultats dels experiments, seria necessari un estudi més ampli i profund.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The Northwestern edge of the modern Caribbean Plate, located in central Middle America (S-Guatemala to N-Costa Rica), is characterized by a puzzle of oceanic and continental terranes that belonged originally to the Pacific façade of North America. South of the Motagua Fault Zone, the actual northern strike slip boundary of the Caribbean Plate, three continental slivers (Copán, Chortis s. str. and Patuca) are sandwiched between two complex suture zones that contain HP/LT mafic and ultramafic oceanic rocks: The Motagua Mélanges to the North, extensively studied in the last ten years and the' newly defined Mesquito Composite Oceanic Terrane (MCOT) to the South. No modem geological data were available for the oceanic terrane located in the southern part of the so called continental "Chortis Block". Classically, the southern limit of this block with the Caribbean Large Igneous Province (CLIP) was placed at a hypothetical fault line connecting the main E-W fault in the Santa Elena Peninsula (N-Costa Rica) with the Hess Escarpment. However, our study in eastern Nicaragua and northwestern Costa Rica evidences an extensive assemblage of oceanic upper mantle and crustal rocks outcropping between the Chortis/Patuca continental blocks and the CLIP. They comprise collided and accreted exotic terranes of Pacific origin recording a polyphased tectonic history. We distinguish: 1- The MCOT that comprises a Late Triassic to Early Cretaceous puzzle of oceanic crust and arc-derived rocks set in a serpentinite matrix, and 2- The Manzanillo and Nicoya Terranes that are made of Cretaceous plateau-like rocks associated with oceanic sediments older than the CLIP. This study has been focused on the rocks of the MCOT. The MCOT comprises the southern half of the former "Chortis Block" and is defined by 4 comer localities characterized by ultramafic and mafic oceanic rocks of Late Triassic, Jurassic and Early Cretaceous age: 1- The Siuna Serpentinite Mélange (NE-Nicaragua), 2- The El Castillo Mélange (Nicaragua/Costa Rica border), 3- DSDP Legs 67 and 84 (Guatemala fore-arc basin), and 4- The Santa Elena Peridiotite (NW-Costa Rica). The Siuna Serpentinite Mélange (SSM) is a HP/LT subduction zone mélange set in a serpentinite matrix that contains oceanic crust and arc-related greenschist to blueschist/eclogite facies metamafic and metasedimentary blocks. Middle Jurassic (Bajocian-Bathonian) radiolarites are found in original sedimentary contact with arc-derived greenstones. Late Jurassic black detrital chert possibly formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma. The El Castillo Mélange (ECM) is composed of serpentinite matrix with OIB metabasalts and Late Triassic (Rhaetian) red and green radiolarite blocks. Recent studies of the DSDP Legs 67/84 show that the Guatemala/Nicaragua fore-arc basin is composed of a pile of ultramafic, mafic (OIB-like) and arc related rocks with ages ranging from Late Triassic to Campanian. Finally, the Santa Elena peridiotites that mark the limit of the MCOT with the Manzanillo/Nicoya Terranes and correspond to an association of ultramafic rocks that comprise peridiotites, dunites and chromites of abyssal and fore-arc origin. The SSM is the result of a collision between a Middle Jurassic island arc and the Patuca Terrane, a fragment of the Western N-American active continental margin. The Siuna Mélange (SSM) and the South Montagna Mélange share common characteristics with the Pacific N-American suture zone (E-Franciscan and Vizcaino mélanges), in particular, the Mesozoic ages of HP/LT metamorphic and the arc-derived blocks. For us, these mélanges imply an originally continuous, but slightly diachronous suture that affected the entire W-American active margin. It may imply the arrival and collision of an exotic intraoceanic arc (Guerrero-Phoenix) related to the origin of the Pacific Plate that initiated as a back arc basin of this arc. The present disposition of the fragments of this suture zone is the result of a northward shift of the active left-lateral strike slip motion between the N-American and the Caribbean Plates. Résumé Le coin nord-ouest de la Plaque Caraïbe moderne se trouve en Amérique Centrale, entre le sud du Guatemala et le nord du Costa Rica. Cette région est composée d'un puzzle de terrains océaniques et continentaux dont les origines se situent sur la façade pacifique de l'Amérique du Nord. Au sud de la faille de Motagua, la limite septentrionale actuelle, décrochante, de la Plaque Caraïbe, se trouvent 3 copeaux continentaux (Copàn, Chortis s. str. et Patuca) coincés entre deux zones de suture complexes à roches mafiques et ultramafiques qui ont subi un métamorphisme de haute pression/basse température (HP/LT). Il s'agit des Mélanges de Motagua au nord, largement étudiés ces dernières années, et du Mesquito Composite Oceanic Terrane (MCOT), récemment défini par nous, au sud. En vue de l'absence de données géologiques modernes concernant les terrains océaniques qui se trouvent dans la partie sud du "Chortis Block" considérée comme continentale, nous avons dédié cette étude à cette région. Classiquement, la limite méridionale entre le "Chortis Block" et la "Caribbean Large Igneous Province" (CLIP) a été associée à une faille hypothétique reliant la faille E-W de Santa Elena (nord du Costa Rica) à l'Escarpement de Hess. Notre étude au Nicaragua oriental et au Costa Rica nord-occidental a révélé l'existence de larges terrains composés d'assemblages de roches mantéliques et océaniques qui se placent entre les blocs continentaux Chortis/Patuca et le CLIP. Ces assemblages révèlent des terrains collisionnés et accrétés d'origine pacifique enregistrant une histoire tectonique polyphasée. Nous distinguons: 1- Le MCOT, un puzzle de roches océaniques d'arc d'âge Triassique supérieur au Crétacée inférieur, 2- Les terrains de Manzanillo et de Nicoya, des morceaux de plateaux océaniques associés à des sédiments océaniques plus âgés que le CLIP. Cette étude se focalisera sur les roches du MCOT. Le MCOT occupe la moitié sud de l'ancien "Chortis Block" et peut se définir par 4 localités de référence qui montrent des roches mafiques et ultramafiques océaniques d'âges compris entre le Trias supérieur et le Crétacée inférieur. 1- Le Siuna Serpentinite Mélange (NE-Nicaragua), 2- Le El Castillo Mélange (Nicaragua/Costa Rica border), 3- Le DSDP Legs 67/84 (Guatemala fore-arc basin) et 4- La Santa Elena Peridiotite (nord-ouest du Costa Rica). Le Siuna Serpentinite Mélange (SSM) est un mélange de subduction HP/BT dans une matrice de serpentinite. On y trouve des éléments de croûte océanique et d'arc insulaire en faciès de schistes verts et schistes bleus. Des radiolarites du Jurassique moyen se trouvent en contact sédimentaire sur des roches vertes d'arc. En revanche, des cherts noirs détritiques datent du Jurassique supérieur et sont probablement issus d'un bassin marginal (fore-arc ?) peu avant leur subduction, car un âge 40Ar/39Ar de refroidissement des phengites date l'exhumation des roches de haute pression à 139 Ma. Le Mélange d'El Castillo (ECM) est constitué d'une matrice serpentinitique et contient des blocs de metabasaltes OIB et des blocs de radiolarites du Trias terminal. Des études récentes ont repris les roches forées lors des DSDP Legs 67 et 84 et montrent que le soubassement du bassin d'avant-arc du Guatemala-Nicaragua est composé de roches ultramafiques et mafiques (OIB et arc), dont les âges isotopiques vont du Trias au Crétacé supérieur. Finalement, les péridiotites de Santa Elena forment la limite sud du MCOT par rapport aux terrains de Manzanillo et Nicoya. Elles contiennent des serpentinites et localement des dunites et chromites à affinité abyssale et de fore-arc. Le SSM témoigne d'une collision entre un arc insulaire d'âge Jurassique moyen et le Patuca Terrane, un fragment de la marge active nord-américaine. Le SSM et le South Motagua Mélange ont des caractéristiques en commun avec les zones de suture de la façade pacifique de l'Amérique du nord (E-Franciscan et Vizcaino mélanges), notamment les âges Mésozoïques du métamorphisme HP/BT et les blocs de roches d'arc. Ce fait nous conduit à penser qu'il s'agit d'une grande zone de suture qui était à l'origine continue sur toute la marge ouest-américaine, mais légèrement diachrone. Cette suture implique l'arrivée et la collision d'un arc intraocéanique exotique (Guerrero-Phoenix) qui est à l'origine de la Plaque Pacifique qui s'ouvrait en back arc par rapport à celui-ci. La disposition actuelle des fragments de cette suture est due à la migration vers le nord du décrochement actif senestre entre la Plaque nord-américaine et la Plaque Caraïbe. K. Flores, 2009 Mesozoic oceanic terranes of southern central America Résumé Grand Public La présente thèse est le résultat de travaux de terrain effectués de 2005 à 2008 au nord-est et au sud du Nicaragua et au nord du Costa Rica, en Amérique Centrale, des analyses pétrologiques et géochimiques en laboratoire ainsi que de la modélisation de l'évolution géodynamique. La région étudiée se situe en bordure nord - ouest de la Plaque Caraïbe moderne. Dans la majorité des publications récentes cette région est représentée comme un vaste bloc continental (le "Bloc Chortis") qui serait limité, (i) au nord, par la faille décrochante de Motagua, la limite actuelle entre la Plaque Nord-Américaine et la Plaque Caraïbe, et (ii) au sud, par une suture hypothétique qui se trouverait aux confins entre le Nicaragua et le Costa Rica. La région du Costa Rica a été considérée presque entièrement comme une partie du Plateau Caraïbe ("Caribbean Large Igneous Province" (CLIP)). L'étude détaillée des affleurements nous a permis de mettre en évidence : - Au nord-est du Nicaragua (Siuna) : Des roches océaniques datées du Jurassique moyen, grâce aux faunes à radiolaires qui ont été extraites des radiolarites rouges. Ces roches ont subi un métamorphisme de haute pression typique des zones de collision. L'étude radio-isotopique Ar/Ar a permis de dater la collision du Crétacé basal (139 Ma). - Au sud du Nicaragua : Des roches océaniques d'âge Trias terminal (200 millions d'années), également datées à l'aide de faunes à radiolaires. Il s'agit actuellement des roches océaniques les plus anciennes connues de l'Amérique Centrale. - L'étude géochimique et les âges des fossiles démontrent que le tiers septentrional du Costa Rica possède un soubassement construit d'au moins deux terrains (Nicoya et Manzanillo), qui ont des caractéristiques de Plateau océanique (Nicoya) et d'arc volcanique du Crétacé moyen (Manzanillo). Ces deux terrains sont plus anciens que le CLIP. En conclusion, nous constatons que la région étudiée est constituée d'un puzzle de 3 blocs continentaux et d'un vaste terrain océanique composite que nous appelons Mesquito Composite Oceanic Terrane (MCOT). En plus, nous définissons les terrains de Nicoya et de Manzanillo comme plus âgés et distincts du CLIP. Le MCOT est caractérisé par la présence de roches du manteau supérieur (les serpentinites) et de la croûte océanique, ainsi que des morceaux d'arcs, d'âge allant du Trias supérieur au Crétacé. Ce terrain est comparable à d'autres zones de suture de la façade pacifique de l'Amérique du nord, notamment en ce qui concerne les âges Mésozoïques, le métamorphisme de haute pression et l'association de roches mantéliques et crustales océaniques. Ce fait nous conduit à penser qu'il s'agit d'une grande zone de suture qui était à l'origine continue sur toute la marge ouest-américaine. Cette suture implique l'arrivée et la collision d'un arc infra-océanique exotique qui serait à l'origine de la Plaque Pacifique qui se serait ouverte en bassin d'arrière arc par rapport à celui-ci. La disposition actuelle des fragments de cette suture est due à la migration vers le nord du décrochement actif senestre entre la Plaque nord-américaine et la Plaque Caraïbe.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During the twentieth century sea surface temperatures in the Atlantic Ocean exhibited prominent multidecadal variations. The source of such variations has yet to be rigorously established—but the question of their impact on climate can be investigated. Here we report on a set of multimodel experiments to examine the impact of patterns of warming in the North Atlantic, and cooling in the South Atlantic, derived from observations, that is characteristic of the positive phase of the Atlantic Multidecadal Oscillation (AMO). The experiments were carried out with six atmospheric General Circulation Models (including two versions of one model), and a major goal was to assess the extent to which key climate impacts are consistent between the different models. The major climate impacts are found over North and South America, with the strongest impacts over land found over the United States and northern parts of South America. These responses appear to be driven by a combination of an off-equatorial Gill response to diabatic heating over the Caribbean due to increased rainfall within the region and a Northward shift in the Inter Tropical Convergence Zone (ITCZ) due to the anomalous cross-equatorial SST gradient. The majority of the models show warmer US land temperatures and reduced Mean Sea Level Pressure during summer (JJA) in response to a warmer North Atlantic and a cooler South Atlantic, in line with observations. However the majority of models show no significant impact on US rainfall during summer. Over northern South America, all models show reduced rainfall in southern hemisphere winter (JJA), whilst in Summer (DJF) there is a generally an increase in rainfall. However, there is a large spread amongst the models in the magnitude of the rainfall anomalies over land. Away from the Americas, there are no consistent significant modelled responses. In particular there are no significant changes in the North Atlantic Oscillation (NAO) over the North Atlantic and Europe in Winter (DJF). Additionally, the observed Sahel drying signal in African rainfall is not seen in the modelled responses. Suggesting that, in contrast to some studies, the Atlantic Multidecadal Oscillation was not the primary driver of recent reductions in Sahel rainfall.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The impact of global climate change on plant distribution, speciation and extinction is of current concern. Examining species climatic preferences via bioclimatic niche modelling is a key tool to study this impact. There is an established link between bioclimatic niche models and phylogenetic diversification. A next step is to examine future distribution predictions from a phylogenetic perspective. We present such a study using Cyclamen (Myrsinaceae), a group which demonstrates morphological and phenological adaptations to its seasonal Mediterranean-type climate. How will the predicted climate change affect future distribution of this popular genus of garden plants? Results: We demonstrate phylogenetic structure for some climatic characteristics, and show that most Cyclamen have distinct climatic niches, with the exception of several wide-ranging, geographically expansive, species. We reconstruct climate preferences for hypothetical ancestral Cyclamen. The ancestral Cyclamen lineage has a preference for the seasonal Mediterranean climate characteristic of dry summers and wet winters. Future bioclimatic niches, based on BIOCLIM and Maxent models, are examined with reference to a future climate scenario for the 2050s. Over the next 50 years we predict a northward shift in the area of climatic suitability, with many areas of current distribution becoming climatically unsuitable. The area of climatic suitability for every Cyclamen species is predicted to decrease. For many species, there may be no areas with a suitable climate regardless of dispersal ability, these species are considered to be at high risk of extinction. This risk is examined from a phylogenetic perspective. Conclusion: Examining bioclimatic niches from a phylogenetic perspective permits novel interpretations of these models. In particular, reconstruction of ancestral niches can provide testable hypothesis about the historical development of lineages. In the future we can expect a northwards shift in climatic suitability for the genus Cyclamen. If this proves to be the case then dispersal is the best chance of survival, which seems highly unlikely for ant-dispersed Cyclamen. Human-assisted establishment of Cyclamen species well outside their native ranges offers hope and could provide the only means of dispersal to potentially suitable future environments. Even without human intervention the phylogenetic perspective demonstrates that major lineages could survive climate change even if many species are lost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Every winter, the high-latitude oceans are struck by severe storms that are considerably smaller than the weather-dominating synoptic depressions1. Accompanied by strong winds and heavy precipitation, these often explosively developing mesoscale cyclones—termed polar lows1—constitute a threat to offshore activities such as shipping or oil and gas exploitation. Yet owing to their small scale, polar lows are poorly represented in the observational and global reanalysis data2 often used for climatological investigations of atmospheric features and cannot be assessed in coarse-resolution global simulations of possible future climates. Here we show that in a future anthropogenically warmed climate, the frequency of polar lows is projected to decline. We used a series of regional climate model simulations to downscale a set of global climate change scenarios3 from the Intergovernmental Panel of Climate Change. In this process, we first simulated the formation of polar low systems in the North Atlantic and then counted the individual cases. A previous study4 using NCEP/NCAR re-analysis data5 revealed that polar low frequency from 1948 to 2005 did not systematically change. Now, in projections for the end of the twenty-first century, we found a significantly lower number of polar lows and a northward shift of their mean genesis region in response to elevated atmospheric greenhouse gas concentration. This change can be related to changes in the North Atlantic sea surface temperature and mid-troposphere temperature; the latter is found to rise faster than the former so that the resulting stability is increased, hindering the formation or intensification of polar lows. Our results provide a rare example of a climate change effect in which a type of extreme weather is likely to decrease, rather than increase.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The time evolution of the circulation change at the end of the Baiu season is investigated using ERA40 data. An end-day is defined for each of the 23 years based on the 850 hPa θe value at 40˚Nin the 130-140˚E sector exceeding 330 K. Daily time series of variables are composited with respect to this day. These composite time-series exhibit a clearer and more rapid change in the precipitation and the large-scale circulation over the whole East Asia region than those performed using calendar days. The precipitation change includes the abrupt end of the Baiu rain, the northward shift of tropical convection perhaps starting a few days before this, and the start of the heavier rain at higher latitudes. The northward migration of lower tropospheric warm, moist tropical air, a general feature of the seasonal march in the region, is fast over the continent and slow over the ocean. By mid to late July the cooler air over the Sea of Japan is surrounded on 3 sides by the tropical air. It is suggestive that the large-scale stage has been set for a jump to the post-Baiu state, i.e., for the end of the Baiu season. Two likely triggers for the actual change emerge from the analysis. The first is the northward movement of tropical convection into the Philippine region. The second is an equivalent barotropic Rossby wave-train, that over a 10-day period develops downstream across Eurasia. It appears likely that in most years one or both mechanisms can be important in triggering the actual end of the Baiu season.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Asian summer monsoon response to global warming is investigated by a transient green-house warming integration with the ECHAM4/OPYC3 CGCM. It is demonstrated that increases of greenhouse gas concentrations intensify the Asian summer monsoon and its variability. The intensified monsoon results mainly from an enhanced land-sea contrast and a northward shift of the convergence zone. A gradual increase of the monsoon variability is simulated from year 2030 onwards. It seems to be connected with the corresponding increase of the sea surface temperature variability over the tropical Pacific.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of a particular wintertime atmospheric circulation regime over the North Atlantic, comprising a northward shift of the North Atlantic eddy-driven jet stream and an associated strong and persistent ridge in the subtropics, is investigated. Several different methods of analysis are combined to describe the temporal evolution of the events and relate it to shifts in the phase of the North Atlantic Oscillation and East Atlantic pattern. First, the authors identify a close relationship between northward shifts of the eddy-driven jet, the establishment and maintenance of strong and persistent ridges in the subtropics, and the occurrence of upper-tropospheric anticyclonic Rossby wave breaking over Iberia. Clear tropospheric precursors are evident prior to the development of the regime, suggesting a preconditioning of the Atlantic jet stream and an upstream influence via a large-scale Rossby wave train from the North Pacific. Transient (2–6 days) eddy forcing plays a dual role, contributing to both the initiation and then the maintenance of the circulation anomalies. During the regime there is enhanced occurrence of anticyclonic Rossby wave breaking, which may be described as low-latitude blocking-like events over the southeastern North Atlantic. A strong ridge is already established at the time of wave-breaking onset, suggesting that the role of wave-breaking events is to amplify the circulation anomalies rather than to initiate them. Wave breaking also seems to enhance the persistence, since it is unlikely that a persistent ridge event occurs without being also accompanied by wave breaking.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Simulations of the climatic response to mid-Holocene (6 ka BP) orbital forcing with two coupled ocean–atmosphere models (FOAM and CSM) show enhancement of monsoonal precipitation in parts of the American Southwest, Central America and northernmost South America during Northern Hemisphere summer. The enhanced onshore flow that brings precipitation into Central America is caused by a northward displacement of the inter-tropical convergence zone, driven by cooling of the equatorial and warming of the northern subtropical and mid-latitude ocean. Ocean feedbacks also enhance precipitation over the American Southwest, although the increase in monsoon precipitation there is largely driven by increases in land-surface temperature. The northward shift in the equatorial precipitation band that causes enhanced precipitation in Central America and the American Southwest has a negative feedback effect on monsoonal precipitation in northern South America. The simulations demonstrate that mid-Holocene aridity in the mid-continent of North America is dynamically linked to the orbitally induced enhancement of the summer monsoon in the American Southwest, with a spatial structure (wet in the Southwest and dry in the mid-continent) similar to that found in strong monsoon years today. Changes in winter precipitation along the west coast of North America, in Central America and along the Gulf Coast, caused by southward-displacement of the westerly storm tracks, indicate that changes in the Northern Hemisphere winter monsoon also play a role in regional climate changes during the mid-Holocene. Although the simulations with FOAM and CSM differ in detail, the general mechanisms and patterns are common to both. The model results thus provide a coherent dynamical explanation for regional patterns of increased or decreased aridity shown by vegetation, lake status and aeolian data from the Americas

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BIOME 6000 is an international project to map vegetation globally at mid-Holocene (6000 14C yr bp) and last glacial maximum (LGM, 18,000 14C yr bp), with a view to evaluating coupled climate-biosphere model results. Primary palaeoecological data are assigned to biomes using an explicit algorithm based on plant functional types. This paper introduces the second Special Feature on BIOME 6000. Site-based global biome maps are shown with data from North America, Eurasia (except South and Southeast Asia) and Africa at both time periods. A map based on surface samples shows the method’s skill in reconstructing present-day biomes. Cold and dry conditions at LGM favoured extensive tundra and steppe. These biomes intergraded in northern Eurasia. Northern hemisphere forest biomes were displaced southward. Boreal evergreen forests (taiga) and temperate deciduous forests were fragmented, while European and East Asian steppes were greatly extended. Tropical moist forests (i.e. tropical rain forest and tropical seasonal forest) in Africa were reduced. In south-western North America, desert and steppe were replaced by open conifer woodland, opposite to the general arid trend but consistent with modelled southward displacement of the jet stream. The Arctic forest limit was shifted slighly north at 6000 14C yr bp in some sectors, but not in all. Northern temperate forest zones were generally shifted greater distances north. Warmer winters as well as summers in several regions are required to explain these shifts. Temperate deciduous forests in Europe were greatly extended, into the Mediterranean region as well as to the north. Steppe encroached on forest biomes in interior North America, but not in central Asia. Enhanced monsoons extended forest biomes in China inland and Sahelian vegetation into the Sahara while the African tropical rain forest was also reduced, consistent with a modelled northward shift of the ITCZ and a more seasonal climate in the equatorial zone. Palaeobiome maps show the outcome of separate, independent migrations of plant taxa in response to climate change. The average composition of biomes at LGM was often markedly different from today. Refugia for the temperate deciduous and tropical rain forest biomes may have existed offshore at LGM, but their characteristic taxa also persisted as components of other biomes. Examples include temperate deciduous trees that survived in cool mixed forest in eastern Europe, and tropical evergreen trees that survived in tropical seasonal forest in Africa. The sequence of biome shifts during a glacial-interglacial cycle may help account for some disjunct distributions of plant taxa. For example, the now-arid Saharan mountains may have linked Mediterranean and African tropical montane floras during enhanced monsoon regimes. Major changes in physical land-surface conditions, shown by the palaeobiome data, have implications for the global climate. The data can be used directly to evaluate the output of coupled atmosphere-biosphere models. The data could also be objectively generalized to yield realistic gridded land-surface maps, for use in sensitivity experiments with atmospheric models. Recent analyses of vegetation-climate feedbacks have focused on the hypothesized positive feedback effects of climate-induced vegetation changes in the Sahara/Sahel region and the Arctic during the mid-Holocene. However, a far wider spectrum of interactions potentially exists and could be investigated, using these data, both for 6000 14C yr bp and for the LGM.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global syntheses of palaeoenvironmental data are required to test climate models under conditions different from the present. Data sets for this purpose contain data from spatially extensive networks of sites. The data are either directly comparable to model output or readily interpretable in terms of modelled climate variables. Data sets must contain sufficient documentation to distinguish between raw (primary) and interpreted (secondary, tertiary) data, to evaluate the assumptions involved in interpretation of the data, to exercise quality control, and to select data appropriate for specific goals. Four data bases for the Late Quaternary, documenting changes in lake levels since 30 kyr BP (the Global Lake Status Data Base), vegetation distribution at 18 kyr and 6 kyr BP (BIOME 6000), aeolian accumulation rates during the last glacial-interglacial cycle (DIRTMAP), and tropical terrestrial climates at the Last Glacial Maximum (the LGM Tropical Terrestrial Data Synthesis) are summarised. Each has been used to evaluate simulations of Last Glacial Maximum (LGM: 21 calendar kyr BP) and/or mid-Holocene (6 cal. kyr BP) environments. Comparisons have demonstrated that changes in radiative forcing and orography due to orbital and ice-sheet variations explain the first-order, broad-scale (in space and time) features of global climate change since the LGM. However, atmospheric models forced by 6 cal. kyr BP orbital changes with unchanged surface conditions fail to capture quantitative aspects of the observed climate, including the greatly increased magnitude and northward shift of the African monsoon during the early to mid-Holocene. Similarly, comparisons with palaeoenvironmental datasets show that atmospheric models have underestimated the magnitude of cooling and drying of much of the land surface at the LGM. The inclusion of feedbacks due to changes in ocean- and land-surface conditions at both times, and atmospheric dust loading at the LGM, appears to be required in order to produce a better simulation of these past climates. The development of Earth system models incorporating the dynamic interactions among ocean, atmosphere, and vegetation is therefore mandated by Quaternary science results as well as climatological principles. For greatest scientific benefit, this development must be paralleled by continued advances in palaeodata analysis and synthesis, which in turn will help to define questions that call for new focused data collection efforts.