932 resultados para Northern fur seal.
Resumo:
This paper includes information about the Pribilof Islands since their discovery by Russia in 1786 and the population of northern fur seals, Cailorhinus ursinus, that return there each summer to bear young and to breed. Russia exterminated the native population of sea Oilers, Enhydra lulris, here and nearly subjected the northern fur seal to the same fate before providing proper protection. The northern fur seal was twice more exposed to extinction following the purchase of Alaska and the Pribilof Islands by the United States in 1867. Excessive harvesting was stopped as a result of strict management by the United States of the animals while on land and a treaty between Japan, Russia, Great Britain (for Canada), and the United States that provided needed protection at sea. In 1941, Japan abrogated this treaty which was replaced by a provisional agreement between Canada and the United States that protected the fur seals in the eastern North Pacific Ocean. Japan, the U.S.S.R., Canada, and the United States again insured the survival of these animals with ratification in 1957 of the "Interim Convention on the Conservation of North Pacific Fur Seals," which is still in force. Under the auspices of this Convention, the United States launched an unprecedented manipulation of the resource through controlled removal during 1956-68 of over 300,000 females considered surplus. The biological rationale for the reduction was that production of fewer pups would result in a higher pregnancy rate and increased survival, which would, in turn, produce a sustained annual harvest of 55,000-60,000 males and 10,000-30,000 females. Predicted results did not occur. The herd reduction program instead coincided with the beginning of a decline in the number of males available for harvest. Suspected but unproven causes were changes in the toll normally accounted for by predation, disease, adverse weather, and hookworms. Depletion of the animals' food supply by foreign fishing Heets and the entanglement of fur seals in trawl webbing and other debris discarded at sea became a prime suspect in altering the average annual harvest of males on the Pribilof Islands from 71,500 (1940-56) to 40,000 (1957-59) to 36,000 (1960) to 82,000 (1961) and to 27,347 (1972-81). Thus was born the concept of a research control area for fur seals, which was agreed upon by members of the Convention in 1973 and instituted by the United States on St. George Island beginning in 1974. All commercial harvesting of fur seals was stopped on St. George Island and intensive behavioral studies were begun on the now unharvested population as it responds to the moratorium and attempts to reach its natural ceiling. The results of these and other studies here and on St. Paul Island are expected to eventually permit a comparison between the dynamics of unharvested and harvested populations, which should in turn permit more precise management of fur seals as nations continue to exploit the marine resources of the North Pacific Ocean and Bering Sea. (PDF file contains 32 pages.)
Resumo:
Examination of hard parts recovered from scats (feces) is currently the most common method for determining the diet of pinnipeds. However, large or sharp prey remains may be spewed (regurgitated) biasing prey composition and size estimations in diet studies based on scats. Percent frequency of occurrence (FO%) and age or size of selected prey remains recovered from northern fur seal (Callorhinus ursinus) scat (n=3444) and spew samples (n=267) collected from rookeries on St. George Island and St. Paul Island, Alaska, between 1990 and 2000 were compared to determine if a bias in prey composition and age or size estimations existed between scats and spews. Overall prey composition was similar between sample type and location, but the relative FO% of primary prey (≥5%) varied by sample type and location. Age or size estimates of walleye pollock (Theragra chalcogramma) and of two species of gonatid squids (Gonatopsis borealis and Berryteuthis magister) were significantly larger in spews than in scats. Observed differences in FO% and estimated age or size of prey species whose remains were found in scats and spews likely result from size-selective digestion of prey remains. Scats were biased toward smaller prey remains, whereas spews were biased toward larger prey remains and cephalopod beaks. The percent overlap between age classes of walleye pollock caught by the commercial trawl fishery and age classes of walleye pollock consumed by northern fur seals varied noticeably between sample types for both islands (scats: St. George=15. 5%; St. Paul=4.1%; spews: St. George=94.6%; St. Paul=89.6%). These results demonstrate that the inclusion of multiple sampling methods allows for a more accurate assessment of northern fur seal prey occurrence and prey age and size.
Resumo:
Caption title.
Resumo:
Hearings held Sept. 23 1965-
Resumo:
1. Systematic list of birds (pp. 23-31) 2. Observations on the Galapagos fur seal, Arctocephalus australis galapagoensis Heller, 1904 (pp. 31-33) 3. Cetaceans observed (pp. 33-34)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Male capacity for spreading genes to a great number of descendents and to determine population dynamics depend directly on the genital organs. Morphological studies in pinnipeds are scarce and the functional meaning of some characteristics has never been discussed. We hypothesized that Arctocephalus australis (A. australis) shows morphophysiological adaptations in order to guarantee the perpetuation of the species in the unique annual mating season. Seven males, dead from natural causes, had their genital organs collected and fixed for morphological description. Some features differ from other described mammalian males and are closely related to the biology and reproductive cycle of this species, as the scrotal epidermis, absence of glandular portion in the ductus deferens and spermatogenic epithelium suggest a recrudescent testis period. The corona glandis exhibits a singular arrangement: its erectile border looks like a formation of petals and its association with the os penis gives a "lily-flower" form to this region. We propose the name margo petaliformis to this particular erectile border of the corona glandis because of its similarity to a flower corola. The male genital organs of A. australis show morphological features compatible with adaptation to environment requirements and reproductive efficiency.
Resumo:
Vol. 16 has half-title: Facsimiles of documents in the Alaskan archives, Department of state of the United States. To accompany the case and counter-case of the United States as presented to the Tribunal.
Resumo:
Sequel: Snow-shoes and sledges.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
This report reviews experiments in the marking, for study purposes, of seals, sea-lions, and fur seals in the North Atlantic, North Pacific, and Antarctic regions. Also discussed are the results of studies of the northern fur seal, especially the series from 1940 to 1049 carried out by U.S. Government agents on the Pribilof Islands, Alaska. (PDF contains 38 pages)
Resumo:
Antarctic fur seals (Arctocephalus gazella) in the South Shetland Islands are recovering from 19th-century exploitation more slowly than the main population at South Georgia. To document demographic changes associated with the recovery in the South Shetlands, we monitored fur seal abundance and reproduction in the vicinity of Elephant Island during austral summers from 1986/1987 through 1994/1995. Total births, mean and variance of birth dates, and average daily mortality rates were estimated from daily live pup counts at North Cove (NC) and North Annex (NA) colonies on Seal Island. Sightings of leopard seals (Hydrurga leptonyx) and incidents of leopard seal predation on fur seal pups were recorded opportunistically during daily fur seal research at both sites. High mortality of fur seal pups, attributed to predation by leopard seals frequently observed at NC, caused pup numbers to decline rapidly between January and March (i.e., prior to weaning) each year and probably caused a long-term decline in the size of that colony. The NA colony, where leopard seals were never observed, increased in size during the study. Pup mortality from causes other than leopard seal predation appeared to be similar at the two sites. The number of pups counted at four locations in the Elephant Island vicinity increased slowly, at an annual rate of 3.8%, compared to rates as high as 11% at other locations in the South Shetland Islands. Several lines of circumstantial evidence are consistent with the hypothesis that leopard seal predators limit the growth of the fur seal population in the Elephant Island area and perhaps in the broader population in the South Shetland Islands. The sustained growth of this fur seal population over many decades rules out certain predator–prey models, allowing inference about the interaction between leopard seals and fur seals even though it is less thoroughly studied than predator–prey systems of terrestrial vertebrates of the northern hemisphere. Top-down forces should be included in hypotheses for future research on the factors shaping the recovery of the fur seal population in the South Shetland Islands.
Resumo:
The 1984 International Symposium and Workshop on the Biology of Fur Seals originated in informal talks in 1981. However, the scope and focus of the symposium remained unclear until an informal workshop was held in San Diego in June 1983. This meeting synthesised data on the foraging and pup attendance activities of six species of fur seals, and attempted to formulate a coherent framework for the adaptations associated with their maternal strategies (Gentry et al. 1986). During the workshop it was clear that comparative data on many key aspects of fur seal biology and ecology were missing. This absence of data applied not only to less well known species, for some of which considerable unpublished data existed, but also to better known species for which research in some areas had either been neglected or unreported. The value of applying the comparative method to seals, especially comparisons integrating physiology, ecology, and reproductive biology, was amply demonstrated by the results of the 1983 workshop (Gentry and Kooyman 1986). However, we were also aware that many other problems outside the area of maternal strategies could benefit from comparative data, such as recovery of populations from the effects of harvesting. Therefore, to accommodate the range of potential research, we organized this symposium to produce an up-to-date synthesis of relevant information for all species of fur seals. It was also clear that fur seal research could benefit from increased communication and collaboration among its practitioners. To foster the spread of ideas, we held oral presentations on some topics of current research and techniques and organized workshops on specific topics, in addition to providing opportunities for informal talks among participants. Thanks to generous support from the British Antarctic Survey, the National Marine Fisheries Service of the United States, and the Scientific Committee on Antarctic Research, the International Fur Seal Symposium was held at the British Antarctic Survey, Cambridge, England, 23-27 April 1984. The 36 participants are shown in Figure 1. A list of Symposium participants and authors is presented in Appendix 1 of the Proceedings. (PDF file contains 220 pages.)