998 resultados para North Atlantic Ocean
Resumo:
Tese de Doutoramento em Ciências do Mar, especialidade em Ecologia Marinha.
Resumo:
Using experiments with an atmospheric general circulation model, the climate impacts of a basin-scale warming or cooling of the North Atlantic Ocean are investigated. Multidecadal fluctuations with this pattern were observed during the twentieth century, and similar variations--but with larger amplitude--are believed to have occurred in the more distant past. It is found that in all seasons the response to warming the North Atlantic is strongest, in the sense of highest signal-to-noise ratio, in the Tropics. However there is a large seasonal cycle in the climate impacts. The strongest response is found in boreal summer and is associated with suppressed precipitation and elevated temperatures over the lower-latitude parts of North and South America. In August-September-October there is a significant reduction in the vertical shear in the main development region for Atlantic hurricanes. In winter and spring, temperature anomalies over land in the extratropics are governed by dynamical changes in circulation rather than simply reflecting a thermodynamic response to the warming or cooling of the ocean. The tropical climate response is primarily forced by the tropical SST anomalies, and the major features are in line with simple models of the tropical circulation response to diabatic heating anomalies. The extratropical climate response is influenced both by tropical and higher-latitude SST anomalies and exhibits nonlinear sensitivity to the sign of the SST forcing. Comparisons with multidecadal changes in sea level pressure observed in the twentieth century support the conclusion that the impact of North Atlantic SST change is most important in summer, but also suggest a significant influence in lower latitudes in autumn and winter. Significant climate impacts are not restricted to the Atlantic basin, implying that the Atlantic Ocean could be an important driver of global decadal variability. The strongest remote impacts are found to occur in the tropical Pacific region in June-August and September-November. Surface anomalies in this region have the potential to excite coupled oceanatmosphere feedbacks, which are likely to play an important role in shaping the ultimate climate response.
Resumo:
The commonly held view of the conditions in the North Atlantic at the last glacial maximum, based on the interpretation of proxy records, is of large-scale cooling compared to today, limited deep convection, and extensive sea ice, all associated with a southward displaced and weakened overturning thermohaline circulation (THC) in the North Atlantic. Not all studies support that view; in particular, the "strength of the overturning circulation" is contentious and is a quantity that is difficult to determine even for the present day. Quasi-equilibrium simulations with coupled climate models forced by glacial boundary conditions have produced differing results, as have inferences made from proxy records. Most studies suggest the weaker circulation, some suggest little or no change, and a few suggest a stronger circulation. Here results are presented from a three-dimensional climate model, the Hadley Centre Coupled Model version 3 (HadCM3), of the coupled atmosphere - ocean - sea ice system suggesting, in a qualitative sense, that these diverging views could all have occurred at different times during the last glacial period, with different modes existing at different times. One mode might have been characterized by an active THC associated with moderate temperatures in the North Atlantic and a modest expanse of sea ice. The other mode, perhaps forced by large inputs of meltwater from the continental ice sheets into the northern North Atlantic, might have been characterized by a sluggish THC associated with very cold conditions around the North Atlantic and a large areal cover of sea ice. The authors' model simulation of such a mode, forced by a large input of freshwater, bears several of the characteristics of the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) Project's reconstruction of glacial sea surface temperature and sea ice extent.
Resumo:
Measurements of anthropogenic tracers such as chlorofluorocarbons and tritium must be quantitatively combined with ocean general circulation models as a component of systematic model development. The authors have developed and tested an inverse method, using a Green's function, to constrain general circulation models with transient tracer data. Using this method chlorofluorocarbon-11 and -12 (CFC-11 and -12) observations are combined with a North Atlantic configuration of the Miami Isopycnic Coordinate Ocean Model with 4/3 degrees resolution. Systematic differences can be seen between the observed CFC concentrations and prior CFC fields simulated by the model. These differences are reduced by the inversion, which determines the optimal gas transfer across the air-sea interface, accounting for uncertainties in the tracer observations. After including the effects of unresolved variability in the CFC fields, the model is found to be inconsistent with the observations because the model/data misfit slightly exceeds the error estimates. By excluding observations in waters ventilated north of the Greenland-Scotland ridge (sigma (0) < 27.82 kg m(-3); shallower than about 2000 m), the fit is improved, indicating that the Nordic overflows are poorly represented in the model. Some systematic differences in the model/data residuals remain and are related, in part, to excessively deep model ventilation near Rockall and deficient ventilation in the main thermocline of the eastern subtropical gyre. Nevertheless, there do not appear to be gross errors in the basin-scale model circulation. Analysis of the CFC inventory using the constrained model suggests that the North Atlantic Ocean shallower than about 2000 m was near 20% saturated in the mid-1990s. Overall, this basin is a sink to 22% of the total atmosphere-to-ocean CFC-11 flux-twice the global average value. The average water mass formation rates over the CFC transient are 7.0 and 6.0 Sv (Sv = 10(6) m(3) s(-1)) for subtropical mode water and subpolar mode water, respectively.
Resumo:
In the mid-1990s the subpolar gyre of the North Atlantic underwent a remarkable rapid warming, with sea surface temperatures increasing by around 1C in just 2 years. This rapid warming followed a prolonged positive phase of the North Atlantic Oscillation (NAO), but also coincided with an unusually negative NAO index in the winter of 1995/96. By comparing ocean analyses and carefully designed model experiments we show that this rapid warming can be understood as a delayed response to the prolonged positive phase of the NAO, and not simply an instantaneous response to the negative NAO index of 1995/96. Furthermore, we infer that the warming was partly caused by a surge, and subsequent decline, in the Meridional Overturning Circulation and northward heat transport of the Atlantic Ocean. Our results provide persuasive evidence of significant oceanic memory on multi-annual timescales, and are therefore encouraging for the prospects of developing skillful predictions.
Resumo:
In the mid 1990s the North Atlantic subpolar gyre (SPG) warmed rapidly, with sea surface temperatures (SST) increasing by 1°C in just a few years. By examining initialized hindcasts made with the UK Met Office Decadal Prediction System (DePreSys), it is shown that the warming could have been predicted. Conversely, hindcasts that only consider changes in radiative forcings are not able to capture the rapid warming. Heat budget analysis shows that the success of the DePreSys hindcasts is due to the initialization of anomalously strong northward ocean heat transport. Furthermore, it is found that initializing a strong Atlantic circulation, and in particular a strong Atlantic Meridional Overturning Circulation, is key for successful predictions. Finally, we show that DePreSys is able to predict significant changes in SST and other surface climate variables related to the North Atlantic warming.
Resumo:
The efficiency with which the oceans take up heat has a significant influence on the rate of global warming. Warming of the ocean above 700 m over the past few decades has been well documented. However, most of the ocean lies below 700 m. Here we analyse observations of heat uptake into the deep North Atlantic. We find that the extratropical North Atlantic as a whole warmed by 1.45±0.5×1022 J between 1955 and 2005, but Lower North Atlantic Deep Water cooled, most likely as an adjustment from an early twentieth-century warm period. In contrast, the heat content of Upper North Atlantic Deep Water exhibited strong decadal variability. We demonstrate and quantify the importance of density-compensated temperature anomalies for long-term heat uptake into the deep North Atlantic. These anomalies form in the subpolar gyre and propagate equatorwards. High salinity in the subpolar gyre is a key requirement for this mechanism. In the past 50 years, suitable conditions have occurred only twice: first during the 1960s and again during the past decade. We conclude that heat uptake through density-compensated temperature anomalies will contribute to deep ocean heat uptake in the near term. In the longer term, the importance of this mechanism will be determined by competition between the multiple processes that influence subpolar gyre salinity in a changing climate.
Resumo:
In winter of 2009–2010 south-western Europe was hit by several destructive windstorms. The most important was Xynthia (26–28 February 2010), which caused 64 reported casualties and was classified as the 2nd most expensive natural hazard event for 2010 in terms of economic losses. In this work we assess the synoptic evolution, dynamical characteristics and the main impacts of storm Xynthia, whose genesis, development and path were very uncommon. Wind speed gusts observed at more than 500 stations across Europe are evaluated as well as the wind gust field obtained with a regional climate model simulation for the entire North Atlantic and European area. Storm Xynthia was first identified on 25 February around 30° N, 50° W over the subtropical North Atlantic Ocean. Its genesis occurred on a region characterized by warm and moist air under the influence of a strong upper level wave embedded in the westerlies. Xynthia followed an unusual SW–NE path towards Iberia, France and central Europe. The role of moist air masses on the explosive development of Xynthia is analysed by considering the evaporative sources. A lagrangian model is used to identify the moisture sources, sinks and moisture transport associated with the cyclone during its development phase. The main supply of moisture is located over an elongated region of the subtropical North Atlantic Ocean with anomalously high SST, confirming that the explosive development of storm Xynthia had a significant contribution from the subtropics.
Resumo:
In the 1960s and early 1970s sea surface temperatures in the North Atlantic Ocean cooled rapidly. There is still considerable uncertainty about the causes of this event, although various mechanisms have been proposed. In this observational study it is demonstrated that the cooling proceeded in several distinct stages. Cool anomalies initially appeared in the mid-1960s in the Nordic Seas and Gulf Stream Extension, before spreading to cover most of the Subpolar Gyre. Subsequently, cool anomalies spread into the tropical North Atlantic before retreating, in the late 1970s, back to the Subpolar Gyre. There is strong evidence that changes in atmospheric circulation, linked to a southward shift of the Atlantic ITCZ, played an important role in the event, particularly in the period 1972-76. Theories for the cooling event must account for its distinctive space-time evolution. Our analysis suggests that the most likely drivers were: 1) The “Great Salinity Anomaly” of the late 1960s; 2) An earlier warming of the subpolar North Atlantic, which may have led to a slow-down in the Atlantic Meridional Overturning Circulation; 3) An increase in anthropogenic sulphur dioxide emissions. Determining the relative importance of these factors is a key area for future work.
Resumo:
Observations and climate models suggest significant decadal variability within the North Atlantic subpolar gyre (NA SPG), though observations are sparse and models disagree on the details of this variability. Therefore, it is important to understand 1) the mechanisms of simulated decadal variability, 2) which parts of simulated variability are more faithful representations of reality, and 3) the implications for climate predictions. Here, we investigate the decadal variability in the NA SPG in the state-of-the-art, high resolution (0.25◦ ocean resolution), climate model ‘HadGEM3’. We find a decadal mode with a period of 17 years that explains 30% of the annual variance in related indices. The mode arises due to the advection of heat content anomalies, and shows asymmetries in the timescale of phase reversal between positive and negative phases. A negative feedback from temperature-driven density anomalies in the Labrador Sea (LS) allows for the phase reversal. The North Atlantic Oscillation (NAO), which exhibits the same periodicity, amplifies the mode. The atmosphere-ocean coupling is stronger during positive rather than negative NAO states, explaining the asymmetry. Within the NA SPG, there is potential predictability arising partly from this mode for up to 5 years. There are important similarities between observed and simulated variability, such as the apparent role for the propagation of heat content anomalies. However, observations suggest interannual LS density anomalies are salinity-driven. Salinity control of density would change the temperature feedback to the south, possibly limiting real-world predictive skill in the southern NA SPG with this model. Finally, to understand the diversity of behaviours, we analyse 42 present-generation climate models. Temperature and salinity biases are found to systematically influence the driver of density variability in the LS. Resolution is a good predictor of the biases. The dependence of variability on the background state has important implications for decadal predictions.
Resumo:
The seasonal distributions of humpback and blue whales (Megaptera novaeangliae and Balaenoptera musculus, respectively) in the North Atlantic Ocean are not fully understood. Although humpbacks have been studied intensively in nearshore or coastal feeding and breeding areas, their migratory movements between these areas have been largely inferred. Blue whales have only been studied intensively along the north shore of the Gulf of St. Lawrence, and their seasonal occurrence and movements elsewhere in the North Atlantic are poorly known. We investigated the historical seasonal distributions of these two species using sighting and catch data extracted from American 18th and 19th century whaling logbooks. These data suggest that humpback whales migrated seasonally from low-latitude calving/ breeding grounds over a protracted period, and that some of them traveled far offshore rather than following coastal routes. Also, at least some humpbacks apparently fed early in the summer west of the Mid-Atlantic Ridge, well south of their known present-day feeding grounds. In assessing the present status of the North Atlantic humpback population, it will be important to determine whether such offshore feeding does in fact occur. Blue whales were present across the southern half of the North Atlantic during the autumn and winter months, and farther north in spring and summer, but we had too few data points to support inferences about these whales’ migratory timing and routes.