1000 resultados para North Andover
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of the town of Andover, Essex County, Massachusetts, surveyed by authority of the town by Henry F. Walling, civil engineer. It was published by Lithy. of A. Kollner in 1852. Scale 1:18,000. Covers the towns of Andover and North Andover, Massachusetts. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town, school district and parish boundaries, and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A plan of Andover taken for the town, by Moses Dorman, Jr. It was published by Pendleton's Lithogy. in 1830. Scale [ca. 1:41,140]. Covers the towns of Andover and North Andover and a portion of the City of Lawrence, Massachusetts.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town boundaries and more. Relief is shown by hachures.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of Essex County, Massachusetts : based upon the trigonometrical survey of the state the details, from actual surveys under the direction of H.F. Walling, superintendent of state map ; engd. by Geo. Worley & Wm. Bracher. It was published by Smith and Morley in 1856. Scale [ca. 1:50,000]. This layer is image 3 of 4 total images, representing the southwest portion of the four sheet source map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A topographical map of Essex County, Massachusetts : based upon the trigonometrical survey of the state the details, from actual surveys under the direction of H.F. Walling, superintendent of state map ; engd. by Geo. Worley & Wm. Bracher. It was published by Smith and Morley in 1856. Scale [ca. 1:50,000]. This layer is image 4 of 4 total images, representing the northwest portion of the four sheet source map.The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, public buildings, schools, churches, cemeteries, industry locations (e.g. mills, factories, mines, etc.), private buildings with names of property owners, town and school district boundaries, and more. Relief shown by hachures. It includes many cadastral insets of individual county towns and villages. It also includes illustrations, business directories, and tables of statistics and distances.This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: The county of Essex, made by John G. Hales ; engraved by J.V.N. Throop. It was published June 19th, 1825. Scale [ca. 1:90,000]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, public buildings, churches, industry locations (e.g. mills, factories, mines, etc.), individual dwellings, town and county boundaries and more. Relief is shown by hachures. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: An accurate map of the country round Boston in New England. It was originally published by Archibald Hamilton in Town and country magazine (London), Jan. 16, 1776. Scale [ca. 1:362,500]. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows features such as roads, drainage, selected public buildings, town boundaries and more. Relief is shown by hachures. Includes ancillary map: A plan of Boston and Charlestown, from a drawing made in 1771, with index to points of interest. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Lawrence, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1886, the edition date is April, 1893 and this map has a reprint date of 1839. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
Mode of access: Internet.
Resumo:
Over the past several years, there has been resurgent interest in regional planning in North America, Europe and Australasia. Spurred by issues such as metropolitan growth, transportation infrastructure, environmental management and economic development, many states and metropolitan regions are undertaking new planning initiatives. These regional efforts have also raised significant question about governance structures, accountability and measures of effectiveness.n this paper, the authors conducted an international review of ten case studies from the United States, Canada, England, Belgium, New Zealand and Australia to explore several critical questions. Using qualitative data template, the research team reviewed plans, documents, web sites and published literature to address three questions. First, what are the governance arrangements for delivering regional planning? Second, what are the mechanisms linking regional plans with state plans (when relevant) and local plans? Third, what means and mechanisms do these regional plans use to evaluate and measure effectiveness? The case study analysis revealed several common themes. First, there is an increasing focus on goverance at the regional level, which is being driven by a range of trends, including regional spatial development initiatives in Europe, regional transportation issues in the US, and the growth of metropolitan regions generally. However, there is considerable variation in how regional governance arrangements are being played out. Similarly, there is a range of processes being used at the regional level to guide planning that range from broad ranging (thick) processes to narrow and limited (thin) approaches. Finally, evaluation and monitoring of regional planning efforts are compiling data on inputs, processes, outputs and outcomes. Although there is increased attention being paid to indicators and monitoring, most of it falls into outcome evaluations such as Agenda 21 or sustainability reporting. Based on our review we suggest there is a need for increased attention on input, process and output indicators and clearer linkages of these indicators in monitoring and evaluation frameworks. The focus on outcome indicators, such as sustainability indicators, creates feedback systems that are too long-term and remote for effective monitoring and feedback. Although we found some examples of where these kinds of monitoring frameworks are linked into a system of governance, there is a need for clearer conceptual development for both theory and practice.
Resumo:
Objective: To define characteristics of vehicle crashes occurring on rural private property in north Queensland with an exploration of associated risk factors. Design: Descriptive analysis of private property crash data collected by the Rural and Remote Road Safety Study. Setting: Rural and remote north Queensland. Participants: A total of 305 vehicle controllers aged 16 years or over hospitalised at Atherton, Cairns, Mount Isa or Townsville for at least 24 hours as a result of a vehicle crash. Main outcome measure: A structured questionnaire completed by participants covering crash details, lifestyle and demographic characteristics, driving history, medical history, alcohol and drug use and attitudes to road use. Results: Overall, 27.9% of interviewees crashed on private property, with the highest proportion of private road crashes occurring in the North West Statistical Division (45%). Risk factors shown to be associated with private property crashes included male sex, riding off-road motorcycle or all-terrain vehicle, first-time driving at that site, lack of licence for vehicle type, recreational use and not wearing a helmet or seatbelt. Conclusions: Considerable trauma results from vehicle crashes on rural private property. These crashes are not included in most crash data sets, which are limited to public road crashes. Legislation and regulations applicable to private property vehicle use are largely focused on workplace health and safety, yet work-related crashes represent a minority of private property crashes in north Queensland.
Resumo:
Aims: The Rural and Remote Road Safety Study (RRRSS) addresses a recognised need for greater research on road trauma in rural and remote Australia, the costs of which are disproportionately high compared with urban areas. The 5-year multi-phase study with whole-of-government support concluded in June 2008. Drawing on RRRSS data, we analysed fatal motorcycle crashes which occurred over 39 months to provide a description of crash characteristics, contributing factors and people involved. The descriptive analysis and discussion may inform development of tailored motorcycle safety interventions. Methods: RRRSS criteria sought vehicle crashes resulting in death or hospitalisation for 24 hours minimum of at least 1 person aged 16 years or over, in the study area defined roughly as the Queensland area north from Bowen in the east and Boulia in the west (excluding Townsville and Cairns urban areas). Fatal motorcycle crashes were selected from the RRRSS dataset. Analysis considered medical data covering injury types and severity, evidence of alcohol, drugs and prior medical conditions, as well as crash descriptions supplied by police to Queensland Transport on contributing circumstances, vehicle types, environmental conditions and people involved. Crash data were plotted in a geographic information system (MapInfo) for spatial analysis. Results: There were 23 deaths from 22 motorcycle crashes on public roads meeting RRRSS criteria. Of these, half were single vehicle crashes and half involved 2 or more vehicles. In contrast to general patterns for driver/rider age distribution in crashes, riders below 25 years of age were represented proportionally within the population. Riders in their thirties comprised 41% of fatalities, with a further 36% accounted for by riders in their fifties. 18 crashes occurred in the Far North Statistical Division (SD), with 2 crashes in both the Northern and North West SDs. Behavioural factors comprised the vast majority of contributing circumstances cited by police, with adverse environmental conditions noted in only 4 cases. Conclusions: Fatal motorcycle crashes were more likely to involve another vehicle and less likely to involve a young rider than non-fatal crashes recorded by the RRRSS. Rider behaviour contributed to the majority of crashes and should be a major focus of research, education and policy development, while other road users’ behaviour and awareness also remains important. With 68% of crashes occurring on major and secondary roads within a 130km radius of Cairns, efforts should focus on this geographic area.