975 resultados para Nontechnical losses
Resumo:
Nowadays, fraud detection is important to avoid nontechnical energy losses. Various electric companies around the world have been faced with such losses, mainly from industrial and commercial consumers. This problem has traditionally been dealt with using artificial intelligence techniques, although their use can result in difficulties such as a high computational burden in the training phase and problems with parameter optimization. A recently-developed pattern recognition technique called optimum-path forest (OPF), however, has been shown to be superior to state-of-the-art artificial intelligence techniques. In this paper, we proposed to use OPF for nontechnical losses detection, as well as to apply its learning and pruning algorithms to this purpose. Comparisons against neural networks and other techniques demonstrated the robustness of the OPF with respect to commercial losses automatic identification.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.
Resumo:
Demand response has gained increasing importance in the context of competitive electricity markets and smart grid environments. In addition to the importance that has been given to the development of business models for integrating demand response, several methods have been developed to evaluate the consumers’ performance after the participation in a demand response event. The present paper uses those performance evaluation methods, namely customer baseline load calculation methods, to determine the expected consumption in each period of the consumer historic data. In the cases in which there is a certain difference between the actual consumption and the estimated consumption, the consumer is identified as a potential cause of non-technical losses. A case study demonstrates the application of the proposed method to real consumption data.
Resumo:
The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others nature-inspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids. © 2013 IEEE.
Resumo:
Demand response has gained increasing importance in the context of competitive electricity markets and smart grid environments. In addition to the importance that has been given to the development of business models for integrating demand response, several methods have been developed to evaluate the consumers' performance after the participation in a demand response event. The present paper uses those performance evaluation methods, namely customer baseline load calculation methods, to determine the expected consumption in each period of the consumer historic data. In the cases in which there is a certain difference between the actual consumption and the estimated consumption, the consumer is identified as a potential cause of non-technical losses. A case study demonstrates the application of the proposed method to real consumption data. © 2013 IEEE.
Resumo:
The increasing importance of the integration of distributed generation and demand response in the power systems operation and planning, namely at lower voltage levels of distribution networks and in the competitive environment of electricity markets, leads us to the concept of smart grids. In both traditional and smart grid operation, non-technical losses are a great economic concern, which can be addressed. In this context, the ELECON project addresses the use of demand response contributions to the identification of non-technical losses. The present paper proposes a methodology to be used by Virtual Power Players (VPPs), which are entities able to aggregate distributed small-size resources, aiming to define the best electricity tariffs for several, clusters of consumers. A case study based on real consumption data demonstrates the application of the proposed methodology.
Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
PURPOSE: To explore the effects of glaucoma and aging on low-spatial-frequency contrast sensitivity by using tests designed to assess performance of either the magnocellular (M) or parvocellular (P) visual pathways. METHODS: Contrast sensitivity was measured for spatial frequencies of 0.25 to 2 cyc/deg by using a published steady- and pulsed-pedestal approach. Sixteen patients with glaucoma and 16 approximately age-matched control subjects participated. Patients with glaucoma were tested foveally and at two midperipheral locations: (1) an area of early visual field loss, and (2) an area of normal visual field. Control subjects were assessed in matched locations. An additional group of 12 younger control subjects (aged 20-35 years) were also tested. RESULTS: Older control subjects demonstrated reduced sensitivity relative to the younger group for the steady (presumed M)- and pulsed (presumed P)-pedestal conditions. Sensitivity was reduced foveally and in the midperiphery across the spatial frequency range. In the area of early visual field loss, the glaucoma group demonstrated further sensitivity reduction relative to older control subjects across the spatial frequency range for both the steady- and pulsed-pedestal tasks. Sensitivity was also reduced in the midperipheral location of "normal" visual field for the pulsed condition. CONCLUSIONS: Normal aging results in a reduction of contrast sensitivity for the low-spatial-frequency-sensitive components of both the M and P pathways. Glaucoma results in a further reduction of sensitivity that is not selective for M or P function. The low-spatial-frequency-sensitive channels of both pathways, which are presumably mediated by cells with larger receptive fields, are approximately equivalently impaired in early glaucoma.