885 resultados para Nonlinear stability analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nonlinear dynamic model of microbial growth is established based on the theories of the diffusion response of thermodynamics and the chemotactic response of biology. Except for the two traditional variables, i.e. the density of bacteria and the concentration of attractant, the pH value, a crucial influencing factor to the microbial growth, is also considered in this model. The pH effect on the microbial growth is taken as a Gaussian function G0e-(f- fc)2/G1, where G0, G1 and fc are constants, f represents the pH value and fc represents the critical pH value that best fits for microbial growth. To study the effects of the reproduction rate of the bacteria and the pH value on the stability of the system, three parameters a, G0 and G1 are studied in detail, where a denotes the reproduction rate of the bacteria, G0 denotes the impacting intensity of the pH value to microbial growth and G1 denotes the bacterial adaptability to the pH value. When the effect of the pH value of the solution which microorganisms live in is ignored in the governing equations of the model, the microbial system is more stable with larger a. When the effect of the bacterial chemotaxis is ignored, the microbial system is more stable with the larger G1 and more unstable with the larger G0 for f0 > fc. However, the stability of the microbial system is almost unaffected by the variation G0 and G1 and it is always stable for f0 < fc under the assumed conditions in this paper. In the whole system model, it is more unstable with larger G1 and more stable with larger G0 for f0 < fc. The system is more stable with larger G1 and more unstable with larger G0 for f0 > fc. However, the system is more unstable with larger a for f0 < fc and the stability of the system is almost unaffected by a for f0 > fc. The results obtained in this study provide a biophysical insight into the understanding of the growth and stability behavior of microorganisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the stability analysis for a distribution static compensator (DSTATCOM) that operates in current control mode based on bifurcation theory. Bifurcations delimit the operating zones of nonlinear circuits and, hence, the capability to compute these bifurcations is of important interest for practical design. A control design for the DSTATCOM is proposed. Along with this control, a suitable mathematical representation of the DSTATCOM is proposed to carry out the bifurcation analysis efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the point of common coupling. In addition, the stability regions in the control gain space, as well as the contour lines for different Floquet multipliers are computed. It is demonstrated through bifurcation analysis that the loss of stability in the DSTATCOM is due to the emergence of a Neimark bifurcation. The observations are verified through simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents the stability analysis based on bifurcation theory of the distribution static compensator (DSTATCOM) operating both in current control mode as in voltage control mode. The bifurcation analysis allows delimiting the operating zones of nonlinear power systems and hence the computation of these boundaries is of interest for practical design and planning purposes. Suitable mathematical representations of the DSTATCOM are proposed to carry out the bifurcation analyses efficiently. The stability regions in the Thevenin equivalent plane are computed for different power factors at the Point of Common Coupling (PCC). In addition, the stability regions in the control gain space are computed, and the DC capacitor and AC capacitor impact on the stability are analyzed in detail. It is shown through bifurcation analysis that the loss of stability in the DSTATCOM is in general due to the emergence of oscillatory dynamics. The observations are verified through detailed simulation studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the renormalization group flows of the two terminal conductance of a superconducting junction of two Luttinger liquid wires. We compute the power laws associated with the renormalization group flow around the various fixed points of this system using the generators of the SU(4) group to generate the appropriate parametrization of an matrix representing small deviations from a given fixed point matrix [obtained earlier in S. Das, S. Rao, and A. Saha, Phys. Rev. B 77, 155418 (2008)], and we then perform a comprehensive stability analysis. In particular, for the nontrivial fixed point which has intermediate values of transmission, reflection, Andreev reflection, and crossed Andreev reflection, we show that there are eleven independent directions in which the system can be perturbed, which are relevant or irrelevant, and five directions which are marginal. We obtain power laws associated with these relevant and irrelevant perturbations. Unlike the case of the two-wire charge-conserving junction, here we show that there are power laws which are nonlinear functions of V(0) and V(2kF) [where V(k) represents the Fourier transform of the interelectron interaction potential at momentum k]. We also obtain the power law dependence of linear response conductance on voltage bias or temperature around this fixed point.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Direct stability analysis ofAC/DC power systems using a structure-preserving energy function (SPEF) is proposed in this paper. The system model considered retains the load buses thereby enabling the representation of nonlinear voltage dependent loads. TheHVDC system is represented with the same degree of detail as is normally done in transient stability simulation. The converter controllers can be represented by simplified or detailed models. Two or multi-terminalDC systems can be considered. The stability analysis is illustrated with a 3-machine system example and encouraging results have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonconservatively loaded columns. which have stochastically distributed material property values and stochastic loadings in space are considered. Young's modulus and mass density are treated to constitute random fields. The support stiffness coefficient and tip follower load are considered to be random variables. The fluctuations of external and distributed loadings are considered to constitute a random field. The variational formulation is adopted to get the differential equation and boundary conditions. The non self-adjoint operators are used at the boundary of the regularity domain. The statistics of vibration frequencies and modes are obtained using the standard perturbation method, by treating the fluctuations to be stochastic perturbations. Linear dependence of vibration and stability parameters over property value fluctuations and loading fluctuations are assumed. Bounds for the statistics of vibration frequencies are obtained. The critical load is first evaluated for the averaged problem and the corresponding eigenvalue statistics are sought. Then, the frequency equation is employed to transform the eigenvalue statistics to critical load statistics. Specialization of the general procedure to Beck, Leipholz and Pfluger columns is carried out. For Pfluger column, nonlinear transformations are avoided by directly expressing the critical load statistics in terms of input variable statistics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates light-load instability in a 100-kW open-loop induction motor drive on account of inverter deadtime. An improved small-signal model of an inverter-fed induction motor is proposed. This improved model is derived by linearizing the nonlinear dynamic equations of the motor, which include the inverter deadtime effect. Stability analysis is carried out on the 100-kW415-V three-phase induction motor considering no load. The analysis brings out the region of instability of this motor drive on the voltage versus frequency (V-f) plane. This region of light-load instability is found to expand with increase in inverter deadtime. Subharmonic oscillations of significant amplitude are observed in the steady-state simulated and measured current waveforms, at numerous operating points in the unstable region predicted, confirming the validity of the stability analysis. Furthermore, simulation and experimental results demonstrate that the proposed model is more accurate than an existing small-signal model in predicting the region of instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents methods by which electrical analogies can be obtained for nonlinear systems. The accuracy of these methods is investigated and several specific types of nonlinear equations are studied in detail.

In Part I a general method is given for obtaining electrical analogs of nonlinear systems with one degree of freedom. Loop and node methods are compared and the stability of the loop analogy is briefly considered.

Parts II and III give a description of the equipment and a discussion of its accuracy. Comparisons are made between experimental and analytic solutions of linear systems.

Part IV is concerned with systems having a nonlinear restoring force. In particular, solutions of Duffing's equation are obtained, both by using the electrical analogy and also by approximate analytical methods.

Systems with nonlinear damping are considered in Part V. Two specific examples are chosen: (1) forced oscillations and (2) self-excited oscillations (van der Pol’s equation). Comparisons are made with approximate analytic solutions.

Part VI gives experimental data for a system obeying Mathieu's equation. Regions of stability are obtained. Examples of subharmonic, ultraharmonic, and ultrasubharmonic oscillat1ons are shown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global stability of confined uniform density wakes is studied numerically, using two-dimensional linear global modes and nonlinear direct numerical simulations. The wake inflow velocity is varied between different amounts of co-flow (base bleed). In accordance with previous studies, we find that the frequencies of both the most unstable linear and the saturated nonlinear global mode increase with confinement. For wake Reynolds number Re = 100 we find the confinement to be stabilising, decreasing the growth rate of the linear and the saturation amplitude of the nonlinear modes. The dampening effect is connected to the streamwise development of the base flow, and decreases for more parallel flows at higher Re. The linear analysis reveals that the critical wake velocities are almost identical for unconfined and confined wakes at Re ≈ 400. Further, the results are compared with literature data for an inviscid parallel wake. The confined wake is found to be more stable than its inviscid counterpart, whereas the unconfined wake is more unstable than the inviscid wake. The main reason for both is the base flow development. A detailed comparison of the linear and nonlinear results reveals that the most unstable linear global mode gives in all cases an excellent prediction of the initial nonlinear behaviour and therefore the stability boundary. However, the nonlinear saturated state is different, mainly for higher Re. For Re = 100, the saturated frequency differs less than 5% from the linear frequency, and trends regarding confinement observed in the linear analysis are confirmed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is described to allow searches for transonic aeroelastic instability of realistically sized aircraft models in multidimensional parameter spaces when computational fluid dynamics are used to model the aerodynamics. Aeroelastic instability is predicted from a small nonlinear eigenvalue problem. The approximation of the computationally expensive interaction term modeling the fluid response is formulated to allow the automated and blind search for aeroelastic instability. The approximation uses a kriging interpolation of exact numerical samples covering the parameter space. The approach, demonstrated for the Goland wing and the multidisciplinary optimization transport wing, results in stability analyses over whole flight envelopes at an equivalent cost of several steady-state simulations.