996 resultados para Nonlinear spectroscopy
Resumo:
The nonlinear spectroscopy of cold atoms in the diffuse laser cooling system is studied in this paper. We present the theoretical models of the recoil-induced resonances (RIR) and the electromagnetically-induced absorption (EIA) of cold atoms in diffuse laser light, and show their signals in an experiment of cooling Rb-87 atomic vapor in an integrating sphere. The theoretical results are in good agreement with the experimental ones when the light intensity distribution in the integrating sphere is considered. The differences between nonlinear spectra of cold atoms in the diffuse laser light and in the optical molasses are also discussed. (c) 2009 Optical Society of America
Resumo:
A form of two-dimensional (2D) vibrational spectroscopy, which uses two ultrafast IR laser pulses, is used to examine the structure of a cyclic penta-peptide in solution. Spectrally resolved cross peaks occur in the off-diagonal region of the 2D IR spectrum of the amide I region, analogous to those in 2D NMR spectroscopy. These cross peaks measure the coupling between the different amide groups in the structure. Their intensities and polarizations relate directly to the three-dimensional structure of the peptide. With the help of a model coupling Hamiltonian, supplemented by density functional calculations, the spectra of this penta-peptide can be regenerated from the known solution phase structure. This 2D-IR measurement, with an intrinsic time resolution of less than 1 ps, could be used in all time regimes of interest in biology.
Resumo:
Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz, 3 cm-1 to 300 cm-1, or 3000 μm to 30 μm) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 cm-1) and the mid-IR (400 - 4000 cm-1). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with ~10 GHz (~0.3 cm-1) resolution.
Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm-1 (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectra features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice.
To advance the study of liquids with THz spectroscopy, we developed a new ultrafast nonlinear THz spectroscopic technique: heterodyne-detected, ultrafast THz Kerr effect (TKE) spectroscopy. We implemented a heterodyne-detection scheme into a TKE spectrometer that uses a stilbazoiumbased THz emitter, 4-N,N-dimethylamino-4-N-methyl-stilbazolium 2,4,6-trimethylbenzenesulfonate (DSTMS), and high numerical aperture optics which generates THz electric field in excess of 300 kV/cm, in the sample. This allows us to report the first measurement of quantum beats at terahertz (THz) frequencies that result from vibrational coherences initiated by the nonlinear, dipolar interaction of a broadband, high-energy, (sub)picosecond THz pulse with the sample. Our instrument improves on both the frequency coverage, and sensitivity previously reported; it also ensures a backgroundless measurement of the THz Kerr effect in pure liquids. For liquid diiodomethane, we observe a quantum beat at 3.66 THz (122 cm-1), in exact agreement with the fundamental transition frequency of the υ4 vibration of the molecule. This result provides new insight into dipolar vs. Raman selection rules at terahertz frequencies.
To conclude we discuss future directions for the nonlinear THz spectroscopy in the Blake lab. We report the first results from an experiment using a plasma-based THz source for nonlinear spectroscopy that has the potential to enable nonlinear THz spectra with a sub-100 fs temporal resolution, and how the optics involved in the plasma mechanism can enable THz pulse shaping. Finally, we discuss how a single-shot THz detection scheme could improve the acquisition of THz data and how such a scheme could be implemented in the Blake lab. The instruments developed herein will hopefully remain a part of the groups core competencies and serve as building blocks for the next generation of THz instrumentation that pushes the frontiers of both chemistry and the scientific enterprise as a whole.
Resumo:
When a light beam passes through any medium, the effects of interaction of light with the material depend on the field intensity. At low light intensities the response of materials remain linear to the amplitude of the applied electromagnetic field. But for sufficiently high intensities, the optical properties of materials are no longer linear to the amplitude of applied electromagnetic field. In such cases, the interaction of light waves with matter can result in the generation of new frequencies due to nonlinear processes such as higher harmonic generation and mixing of incident fields. One such nonlinear process, namely, the third order nonlinear spectroscopy has become a popular tool to study molecular structure. Thus, the spectroscopy based on the third order optical nonlinearity called stimulated Raman spectroscopy (SRS) is a tool to extract the structural and dynamical information about a molecular system. Ultrafast Raman loss spectroscopy (URLS) is analogous to SRS but is more sensitive than SRS. In this paper, we present the theoretical basis of SRS (URLS) techniques which have been developed in our laboratory.
Resumo:
An optimal feedback control of two-photon fluorescence in the Coumarin 515 ethanol solution excited by shaping femtosecond laser pulses based on genetic algorithm is demonstrated experimentally. The two-photon fluorescence intensity can be enhanced by similar to 20%. Second harmonic generation frequency-resolved optical gating traces indicate that the optimal laser pulses are positive chirp, which are in favor of the effective population transfer of two-photon transitions. The dependence of the two-photon fluorescence signal on the laser pulse chirp is investigated to validate the theoretical model for the effective population transfer of two-photon transitions. The experimental results appear the potential applications in nonlinear spectroscopy and molecular physics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We experimentally study the ac Stark splitting in D2 line of cold Rb-87 atoms. The frequency span between the Autler-Townes doublets is obviously larger than that derived from theoretical calculation. Two physical effects, which increase the effective Rabi frequency, contribute to the splitting broadening. First, atoms tend to distribute in strong lield places of a inhomogeneous red-detuned light field. Second, atoms reabsorb scattered light when they are huge in number and high in density.
Resumo:
Excited state absorption and excited state dynamics of indocyanine-green (ICG) dissolved in dymethyl sulfoxide were measured using white-light continuum Z-scan (WLCZScan) and white-light continuum pump-probe (WLCPP) techniques. The excited state absorption spectrum, obtained through Z-scan measurements, revealed saturable absorption (SA) for wavelengths longer than 630 nm, while reverse saturable absorption (RSA) appeared, as indicated by a band at approximately 570 nm. Both processes were modeled by a three-energy-level diagram, from which the excited state cross-section values were determined. SA and RSA were also observed in pump-probe experiments, with a recovery time in the hundreds of picoseconds time scale due to the long lifetime of the first excited state of ICG. Such results contribute to the understanding of ICG optical properties, allowing application in photonics and medicine. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.
Resumo:
La génération des fréquences somme (SFG), une technique spectroscopique spécifique aux interfaces, a été utilisée pour caractériser les changements de la structure macromoléculaire du surfactant cationique chlorure de dodécyltriméthylammonium (DTAC) à l’interface silice/eau dans une plage de pH variant entre 3 et 11. Les conditions expérimentales ont été choisies pour imiter les conditions les plus communes trouvées pendant les opérations de récupération assistée du pétrole. Particulièrement, la silice a été étudiée, car elle est un des composantes des surfaces minérales des réservoirs de grès, et l’adsorption du surfactant a été étudiée avec une force ionique pertinente pour les fluides de la fracturation hydraulique. Les spectres SFG ont présenté des pics détectables avec une amplitude croissante dans la région des étirements des groupes méthylène et méthyle lorsque le pH est diminué jusqu’à 3 ou augmenté jusqu’à 11, ce qui suggère des changements de la structure des agrégats de surfactant à l’interface silice/eau à une concentration de DTAC au-delà de la concentration micellaire critique. De plus, des changements dans l’intensité SFG ont été observés pour le spectre de l’eau quand la concentration de DTAC augmente de 0,2 à 50 mM dans les conditions acide, neutre et alcaline. À pH 3, près du point de charge zéro de la surface de silice, l’excès de charge positive en raison de l’adsorption du surfactant cationique crée un champ électrostatique qui oriente les molécules d’eau à l’interface. À pH 7 et 11, ce qui sont des valeurs au-dessus du point de charge zéro de la surface de silice, le champ électrostatique négatif à l’interface silice/eau diminue par un ordre de grandeur avec l’adsorption du surfactant comme résultat de la compensation de la charge négative à la surface par la charge positive du DTAC. Les résultats SFG ont été corrélés avec des mesures de l’angle de contact et de la tension interfaciale à pH 3, 7 et 11.
Resumo:
As a second-order nonlinear optical process, sum-frequency generation is highly surface-specific and accordingly has been developed into a very powerful and versatile surface spectroscopic tool. It has found many unique applications in different disciplines and thus provided many exciting new research opportunities in surface and surface-related science. Selected examples are discussed here to illustrate the power of the technique.
Resumo:
We discuss Fermi-edge singularity effects on the linear and nonlinear transient response of an electron gas in a doped semiconductor. We use a bosonization scheme to describe the low-energy excitations, which allows us to compute the time and temperature dependence of the response functions. Coherent control of the energy absorption at resonance is analyzed in the linear regime. It is shown that a phase shift appears in the coherent control oscillations, which is not present in the excitonic case. The nonlinear response is calculated analytically and used to predict that four wave-mixing experiments would present a Fermi-edge singularity when the exciting energy is varied. A new dephasing mechanism is predicted in doped samples that depends linearly on temperature and is produced by the low-energy bosonic excitations in the conduction band.
Resumo:
Spatially offset Raman spectroscopy (SORS) is a powerful new technique for the non-invasive detection and identification of concealed substances and drugs. Here, we demonstrate the SORS technique in several scenarios that are relevant to customs screening, postal screening, drug detection and forensics applications. The examples include analysis of a multi-layered postal package to identify a concealed substance; identification of an antibiotic capsule inside its plastic blister pack; analysis of an envelope containing a powder; and identification of a drug dissolved in a clear solvent, contained in a non-transparent plastic bottle. As well as providing practical examples of SORS, the results highlight several considerations regarding the use of SORS in the field, including the advantages of different analysis geometries and the ability to tailor instrument parameters and optics to suit different types of packages and samples. We also discuss the features and benefits of SORS in relation to existing Raman techniques, including confocal microscopy, wide area illumination and the conventional backscattered Raman spectroscopy. The results will contribute to the recognition of SORS as a promising method for the rapid, chemically-specific analysis and detection of drugs and pharmaceuticals.