865 resultados para Nonlinear mixed effects model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we propose and analyze nonlinear elliptical models for longitudinal data, which represent an alternative to gaussian models in the cases of heavy tails, for instance. The elliptical distributions may help to control the influence of the observations in the parameter estimates by naturally attributing different weights for each case. We consider random effects to introduce the within-group correlation and work with the marginal model without requiring numerical integration. An iterative algorithm to obtain maximum likelihood estimates for the parameters is presented, as well as diagnostic results based on residual distances and local influence [Cook, D., 1986. Assessment of local influence. journal of the Royal Statistical Society - Series B 48 (2), 133-169; Cook D., 1987. Influence assessment. journal of Applied Statistics 14 (2),117-131; Escobar, L.A., Meeker, W.Q., 1992, Assessing influence in regression analysis with censored data, Biometrics 48, 507-528]. As numerical illustration, we apply the obtained results to a kinetics longitudinal data set presented in [Vonesh, E.F., Carter, R.L., 1992. Mixed-effects nonlinear regression for unbalanced repeated measures. Biometrics 48, 1-17], which was analyzed under the assumption of normality. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides general matrix formulas for computing the score function, the (expected and observed) Fisher information and the A matrices (required for the assessment of local influence) for a quite general model which includes the one proposed by Russo et al. (2009). Additionally, we also present an expression for the generalized leverage on fixed and random effects. The matrix formulation has notational advantages, since despite the complexity of the postulated model, all general formulas are compact, clear and have nice forms. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of assessing variance components is essential in deciding on the inclusion of random effects in the context of mixed models. In this work we discuss this problem by supposing nonlinear elliptical models for correlated data by using the score-type test proposed in Silvapulle and Silvapulle (1995). Being asymptotically equivalent to the likelihood ratio test and only requiring the estimation under the null hypothesis, this test provides a fairly easy computable alternative for assessing one-sided hypotheses in the context of the marginal model. Taking into account the possible non-normal distribution, we assume that the joint distribution of the response variable and the random effects lies in the elliptical class, which includes light-tailed and heavy-tailed distributions such as Student-t, power exponential, logistic, generalized Student-t, generalized logistic, contaminated normal, and the normal itself, among others. We compare the sensitivity of the score-type test under normal, Student-t and power exponential models for the kinetics data set discussed in Vonesh and Carter (1992) and fitted using the model presented in Russo et al. (2009). Also, a simulation study is performed to analyze the consequences of the kurtosis misspecification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite many researches on development in education and psychology, not often is the methodology tested with real data. A major barrier to test the growth model is that the design of study includes repeated observations and the nature of the growth is nonlinear. The repeat measurements on a nonlinear model require sophisticated statistical methods. In this study, we present mixed effects model in a negative exponential curve to describe the development of children's reading skills. This model can describe the nature of the growth on children's reading skills and account for intra-individual and inter-individual variation. We also apply simple techniques including cross-validation, regression, and graphical methods to determine the most appropriate curve for data, to find efficient initial values of parameters, and to select potential covariates. We illustrate with an example that motivated this research: a longitudinal study of academic skills from grade 1 to grade 12 in Connecticut public schools. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to examine metacognitive accuracy (i.e., the relationship between metacognitive judgment and memory performance), researchers often rely on by-participant analysis, where metacognitive accuracy (e.g., resolution, as measured by the gamma coefficient or signal detection measures) is computed for each participant and the computed values are entered into group-level statistical tests such as the t-test. In the current work, we argue that the by-participant analysis, regardless of the accuracy measurements used, would produce a substantial inflation of Type-1 error rates, when a random item effect is present. A mixed-effects model is proposed as a way to effectively address the issue, and our simulation studies examining Type-1 error rates indeed showed superior performance of mixed-effects model analysis as compared to the conventional by-participant analysis. We also present real data applications to illustrate further strengths of mixed-effects model analysis. Our findings imply that caution is needed when using the by-participant analysis, and recommend the mixed-effects model analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present fully Bayesian experimental designs for nonlinear mixed effects models, in which we develop simulation-based optimal design methods to search over both continuous and discrete design spaces. Although Bayesian inference has commonly been performed on nonlinear mixed effects models, there is a lack of research into performing Bayesian optimal design for nonlinear mixed effects models that require searches to be performed over several design variables. This is likely due to the fact that it is much more computationally intensive to perform optimal experimental design for nonlinear mixed effects models than it is to perform inference in the Bayesian framework. In this paper, the design problem is to determine the optimal number of subjects and samples per subject, as well as the (near) optimal urine sampling times for a population pharmacokinetic study in horses, so that the population pharmacokinetic parameters can be precisely estimated, subject to cost constraints. The optimal sampling strategies, in terms of the number of subjects and the number of samples per subject, were found to be substantially different between the examples considered in this work, which highlights the fact that the designs are rather problem-dependent and require optimisation using the methods presented in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene-targeted disruption of Grg5, a mouse homologue of Drosophila groucho (gro), results in postnatal growth retardation in mice. The growth defect, most striking in approximately half of the Grg5 null mice, occurs during the first 4-5 weeks of age, but most mice recover retarded growth later. We used the nonlinear mixed-effects model to fit the growth data of wild-type, heterozygous, and Grg5 null mice. On the basis of preliminary evidence suggesting an interaction between Grg5 and the transcription factor Cbfa1/Runx2, critical for skeletal development, we further investigated the skeleton in the mice. A long bone growth plate defect was identified, which included shorter zones of proliferative and hypertrophic chondrocytes and decreased trabecular bone formation. This decreased trabecular bone formation is likely caused by a reduced recruitment of osteoblasts into the growth plate region of Grg5 null mice. Like the growth defect, the growth plate and trabecular bone abnormality improved as the mice grew older. The growth plate defect was associated with reduced Indian hedgehog expression and signaling. We suggest that Grg5, a transcriptional coregulator, modulates the activities of transcription factors, such as Cbfa1/Runx2 in vivo to affect Ihh expression and the function of long bone growth plates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anticancer drugs typically are administered in the clinic in the form of mixtures, sometimes called combinations. Only in rare cases, however, are mixtures approved as drugs. Rather, research on mixtures tends to occur after single drugs have been approved. The goal of this research project was to develop modeling approaches that would encourage rational preclinical mixture design. To this end, a series of models were developed. First, several QSAR classification models were constructed to predict the cytotoxicity, oral clearance, and acute systemic toxicity of drugs. The QSAR models were applied to a set of over 115,000 natural compounds in order to identify promising ones for testing in mixtures. Second, an improved method was developed to assess synergistic, antagonistic, and additive effects between drugs in a mixture. This method, dubbed the MixLow method, is similar to the Median-Effect method, the de facto standard for assessing drug interactions. The primary difference between the two is that the MixLow method uses a nonlinear mixed-effects model to estimate parameters of concentration-effect curves, rather than an ordinary least squares procedure. Parameter estimators produced by the MixLow method were more precise than those produced by the Median-Effect Method, and coverage of Loewe index confidence intervals was superior. Third, a model was developed to predict drug interactions based on scores obtained from virtual docking experiments. This represents a novel approach for modeling drug mixtures and was more useful for the data modeled here than competing approaches. The model was applied to cytotoxicity data for 45 mixtures, each composed of up to 10 selected drugs. One drug, doxorubicin, was a standard chemotherapy agent and the others were well-known natural compounds including curcumin, EGCG, quercetin, and rhein. Predictions of synergism/antagonism were made for all possible fixed-ratio mixtures, cytotoxicities of the 10 best-scoring mixtures were tested, and drug interactions were assessed. Predicted and observed responses were highly correlated (r2 = 0.83). Results suggested that some mixtures allowed up to an 11-fold reduction of doxorubicin concentrations without sacrificing efficacy. Taken together, the models developed in this project present a general approach to rational design of mixtures during preclinical drug development. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patient outcomes in transplantation would improve if dosing of immunosuppressive agents was individualized. The aim of this study is to develop a population pharmacokinetic model of tacrolimus in adult liver transplant recipients and test this model in individualizing therapy. Population analysis was performed on data from 68 patients. Estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F) using the nonlinear mixed effects model program (NONMEM). Factors screened for influence on these parameters were weight, age, sex, transplant type, biliary reconstructive procedure, postoperative day, days of therapy, liver function test results, creatinine clearance, hematocrit, corticosteroid dose, and interacting drugs. The predictive performance of the developed model was evaluated through Bayesian forecasting in an independent cohort of 36 patients. No linear correlation existed between tacrolimus dosage and trough concentration (r(2) = 0.005). Mean individual Bayesian estimates for CL/F and V/F were 26.5 8.2 (SD) L/hr and 399 +/- 185 L, respectively. CL/F was greater in patients with normal liver function. V/F increased with patient weight. CL/F decreased with increasing hematocrit. Based on the derived model, a 70-kg patient with an aspartate aminotransferase (AST) level less than 70 U/L would require a tacrolimus dose of 4.7 mg twice daily to achieve a steady-state trough concentration of 10 ng/mL. A 50-kg patient with an AST level greater than 70 U/L would require a dose of 2.6 mg. Marked interindividual variability (43% to 93%) and residual random error (3.3 ng/mL) were observed. Predictions made using the final model were reasonably nonbiased (0.56 ng/mL), but imprecise (4.8 ng/mL). Pharmacokinetic information obtained will assist in tacrolimus dosing; however, further investigation into reasons for the pharmacokinetic variability of tacrolimus is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim To develop an appropriate dosing strategy for continuous intravenous infusions (CII) of enoxaparin by minimizing the percentage of steady-state anti-Xa concentration (C-ss) outside the therapeutic range of 0.5-1.2 IU ml(-1). Methods A nonlinear mixed effects model was developed with NONMEM (R) for 48 adult patients who received CII of enoxaparin with infusion durations that ranged from 8 to 894 h at rates between 100 and 1600 IU h(-1). Three hundred and sixty-three anti-Xa concentration measurements were available from patients who received CII. These were combined with 309 anti-Xa concentrations from 35 patients who received subcutaneous enoxaparin. The effects of age, body size, height, sex, creatinine clearance (CrCL) and patient location [intensive care unit (ICU) or general medical unit] on pharmacokinetic (PK) parameters were evaluated. Monte Carlo simulations were used to (i) evaluate covariate effects on C-ss and (ii) compare the impact of different infusion rates on predicted C-ss. The best dose was selected based on the highest probability that the C-ss achieved would lie within the therapeutic range. Results A two-compartment linear model with additive and proportional residual error for general medical unit patients and only a proportional error for patients in ICU provided the best description of the data. Both CrCL and weight were found to affect significantly clearance and volume of distribution of the central compartment, respectively. Simulations suggested that the best doses for patients in the ICU setting were 50 IU kg(-1) per 12 h (4.2 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). The best doses for patients in the general medical unit were 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 100 IU kg(-1) per 12 h (8.3 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). These best doses were selected based on providing the lowest equal probability of either being above or below the therapeutic range and the highest probability that the C-ss achieved would lie within the therapeutic range. Conclusion The dose of enoxaparin should be individualized to the patients' renal function and weight. There is some evidence to support slightly lower doses of CII enoxaparin in patients in the ICU setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Oral itraconazole (ITRA) is used for the treatment of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis (CF) because of its antifungal activity against Aspergillus species. ITRA has an active hydroxy-metabolite (OH-ITRA) which has similar antifungal activity. ITRA is a highly lipophilic drug which is available in two different oral formulations, a capsule and an oral solution. It is reported that the oral solution has a 60% higher relative bioavailability. The influence of altered gastric physiology associated with CF on the pharmacokinetics (PK) of ITRA and its metabolite has not been previously evaluated. Objectives: 1) To estimate the population (pop) PK parameters for ITRA and its active metabolite OH-ITRA including relative bioavailability of the parent after administration of the parent by both capsule and solution and 2) to assess the performance of the optimal design. Methods: The study was a cross-over design in which 30 patients received the capsule on the first occasion and 3 days later the solution formulation. The design was constrained to have a maximum of 4 blood samples per occasion for estimation of the popPK of both ITRA and OH-ITRA. The sampling times for the population model were optimized previously using POPT v.2.0.[1] POPT is a series of applications that run under MATLAB and provide an evaluation of the information matrix for a nonlinear mixed effects model given a particular design. In addition it can be used to optimize the design based on evaluation of the determinant of the information matrix. The model details for the design were based on prior information obtained from the literature, which suggested that ITRA may have either linear or non-linear elimination. The optimal sampling times were evaluated to provide information for both competing models for the parent and metabolite and for both capsule and solution simultaneously. Blood samples were assayed by validated HPLC.[2] PopPK modelling was performed using FOCE with interaction under NONMEM, version 5 (level 1.1; GloboMax LLC, Hanover, MD, USA). The PK of ITRA and OH‑ITRA was modelled simultaneously using ADVAN 5. Subsequently three methods were assessed for modelling concentrations less than the LOD (limit of detection). These methods (corresponding to methods 5, 6 & 4 from Beal[3], respectively) were (a) where all values less than LOD were assigned to half of LOD, (b) where the closest missing value that is less than LOD was assigned to half the LOD and all previous (if during absorption) or subsequent (if during elimination) missing samples were deleted, and (c) where the contribution of the expectation of each missing concentration to the likelihood is estimated. The LOD was 0.04 mg/L. The final model evaluation was performed via bootstrap with re-sampling and a visual predictive check. The optimal design and the sampling windows of the study were evaluated for execution errors and for agreement between the observed and predicted standard errors. Dosing regimens were simulated for the capsules and the oral solution to assess their ability to achieve ITRA target trough concentration (Cmin,ss of 0.5-2 mg/L) or a combined Cmin,ss for ITRA and OH-ITRA above 1.5mg/L. Results and Discussion: A total of 241 blood samples were collected and analysed, 94% of them were taken within the defined optimal sampling windows, of which 31% where taken within 5 min of the exact optimal times. Forty six per cent of the ITRA values and 28% of the OH-ITRA values were below LOD. The entire profile after administration of the capsule for five patients was below LOD and therefore the data from this occasion was omitted from estimation. A 2-compartment model with 1st order absorption and elimination best described ITRA PK, with 1st order metabolism of the parent to OH-ITRA. For ITRA the clearance (ClItra/F) was 31.5 L/h; apparent volumes of central and peripheral compartments were 56.7 L and 2090 L, respectively. Absorption rate constants for capsule (kacap) and solution (kasol) were 0.0315 h-1 and 0.125 h-1, respectively. Comparative bioavailability of the capsule was 0.82. There was no evidence of nonlinearity in the popPK of ITRA. No screened covariate significantly improved the fit to the data. The results of the parameter estimates from the final model were comparable between the different methods for accounting for missing data, (M4,5,6)[3] and provided similar parameter estimates. The prospective application of an optimal design was found to be successful. Due to the sampling windows, most of the samples could be collected within the daily hospital routine, but still at times that were near optimal for estimating the popPK parameters. The final model was one of the potential competing models considered in the original design. The asymptotic standard errors provided by NONMEM for the final model and empirical values from bootstrap were similar in magnitude to those predicted from the Fisher Information matrix associated with the D-optimal design. Simulations from the final model showed that the current dosing regimen of 200 mg twice daily (bd) would provide a target Cmin,ss (0.5-2 mg/L) for only 35% of patients when administered as the solution and 31% when administered as capsules. The optimal dosing schedule was 500mg bd for both formulations. The target success for this dosing regimen was 87% for the solution with an NNT=4 compared to capsules. This means, for every 4 patients treated with the solution one additional patient will achieve a target success compared to capsule but at an additional cost of AUD $220 per day. The therapeutic target however is still doubtful and potential risks of these dosing schedules need to be assessed on an individual basis. Conclusion: A model was developed which described the popPK of ITRA and its main active metabolite OH-ITRA in adult CF after administration of both capsule and solution. The relative bioavailability of ITRA from the capsule was 82% that of the solution, but considerably more variable. To incorporate missing data, using the simple Beal method 5 (using half LOD for all samples below LOD) provided comparable results to the more complex but theoretically better Beal method 4 (integration method). The optimal sparse design performed well for estimation of model parameters and provided a good fit to the data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-dimensional variable-order fractional nonlinear reaction-diffusion model is considered. A second-order spatial accurate semi-implicit alternating direction method for a two-dimensional variable-order fractional nonlinear reaction-diffusion model is proposed. Stability and convergence of the semi-implicit alternating direct method are established. Finally, some numerical examples are given to support our theoretical analysis. These numerical techniques can be used to simulate a two-dimensional variable order fractional FitzHugh-Nagumo model in a rectangular domain. This type of model can be used to describe how electrical currents flow through the heart, controlling its contractions, and are used to ascertain the effects of certain drugs designed to treat arrhythmia.