990 resultados para Nonlinear loads modeling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alzheimer׳s disease (AD) is the most common type of dementia among the elderly. This work is part of a larger study that aims to identify novel technologies and biomarkers or features for the early detection of AD and its degree of severity. The diagnosis is made by analyzing several biomarkers and conducting a variety of tests (although only a post-mortem examination of the patients’ brain tissue is considered to provide definitive confirmation). Non-invasive intelligent diagnosis techniques would be a very valuable diagnostic aid. This paper concerns the Automatic Analysis of Emotional Response (AAER) in spontaneous speech based on classical and new emotional speech features: Emotional Temperature (ET) and fractal dimension (FD). This is a pre-clinical study aiming to validate tests and biomarkers for future diagnostic use. The method has the great advantage of being non-invasive, low cost, and without any side effects. The AAER shows very promising results for the definition of features useful in the early diagnosis of AD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important alteration of the equivalent loads profile has been observed in the electrical energy distribution systems, for the last years. Such fact is due to the significant increment of the electronic processors of electric energy that, in general, behave as nonlinear loads, generating harmonic distortions in the currents and voltages along the electric network. The effects of these nonlinear loads, even if they are concentrated in specific sections of the network, are present along the branch circuits, affecting the behavior of the entire electric network. For the evaluation of this phenomenon it is necessary the analysis of the harmonic currents flow and the understanding of the causes and effects of the consequent voltage harmonic distortions. The usual tools for calculation the harmonic flow consider one-line equivalent networks, balanced and symmetrical systems. Therefore, they are not tools appropriate for analysis of the operation and the influence/interaction of mitigation elements. In this context, this work proposes the development of a computational tool for the analysis of the three-phase harmonic propagation using Norton modified models and considering the real nature of unbalanced electric systems operation. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper an alternative method based on artificial neural networks is presented to determine harmonic components in the load current of a single-phase electric power system with nonlinear loads, whose parameters can vary so much in reason of the loads characteristic behaviors as because of the human intervention. The first six components in the load current are determined using the information contained in the time-varying waveforms. The effectiveness of this method is verified by using it in a single-phase active power filter with selective compensation of the current drained by an AC controller. The proposed method is compared with the fast Fourier transform.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tese enfoca o estudo de métodos para compensação de harmônicos em sistemas de energia elétrica e aborda diversos aspectos relacionados à presença de harmônicos nos mesmos, como a apresentação de conceitos e definições em sistemas não-senoidais e estratégias de compensação de potência. Enfatiza-se neste estudo, exemplificado por meio de medições e simulações realizadas, a influência da forma de onda de alimentação sobre cargas não-lineares; a interação harmônica entre a tensão de suprimento e a corrente das cargas, devido à impedância série do sistema; e a influência mútua entre cargas não-lineares em paralelo, como possível forma de atenuação de harmônicos. Para simular e predizer o impacto causado por cargas não-lineares em um sistema, assim como a implementação de ações para mitigar esses impactos, visando à melhoria da qualidade da energia, é necessário o conhecimento das respostas das mesmas. Como produto do presente trabalho, destacam-se as técnicas desenvolvidas para a modelagem de cargas nãolineares sob diferentes condições de alimentação, em especial o uso de técnicas de inteligência computacional, como o sistema neuro-fuzzy e as redes neurais artificiais; assim como o emprego da série de Volterra para predição do comportamento das cargas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The purpose of this paper is to present the application of a three-phase harmonic propagation analysis time-domain tool, using the Norton model to approach the modeling of non-linear loads, making the harmonics currents flow more appropriate to the operation analysis and to the influence of mitigation elements analysis. This software makes it possible to obtain results closer to the real distribution network, considering voltages unbalances, currents imbalances and the application of mitigation elements for harmonic distortions. In this scenario, a real case study with network data and equipments connected to the network will be presented, as well as the modeling of non-linear loads based on real data obtained from some PCCs (Points of Common Coupling) of interests for a distribution company.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Solid Oxide Fuel Cell (SOFC) is a class of fuel cells that is capable of generating very high levels of power at high temperatures. SOFCs are used for stationary power generation and as Combined Heat and Power (CHP) systems. In spite of all the beneficial features of the SOFC, the propagation of ripple currents, due to nonlinear loads, is a challenging problem, as it interferes with the physical operation of the fuel cell. The purpose of this thesis is to identify the cause of ripples and attempt to eliminate or reduce the ripple propagation through the use of Active Power Filters (APF). To this end, a systematic approach to modeling the fuel cell to account for its nonlinear behavior in the presence of current ripples is presented. A model of a small fuel cell power system which consists of a fuel cell, a DC-DC converter, a single-phase inverter and a nonlinear load is developed in MATLAB/Simulink environment. The extent of ripple propagation, due to variations in load magnitude and frequency, are identified using frequency spectrum analysis. In order to reduce the effects of ripple propagation, an APF is modeled to remove ripples from the DC fuel cell current. The emphasis of this thesis is based on the idea that small fuel cell systems cannot implement large passive filters to cancel the effects of ripple propagation and hence, the compact APF topology effectively protects the fuel cell from propagating ripples and improves its electrical performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel surrogate model is proposed in lieu of computational fluid dynamic (CFD) code for fast nonlinear aerodynamic modeling. First, a nonlinear function is identified on selected interpolation points defined by discrete empirical interpolation method (DEIM). The flow field is then reconstructed by a least square approximation of flow modes extracted by proper orthogonal decomposition (POD). The proposed model is applied in the prediction of limit cycle oscillation for a plunge/pitch airfoil and a delta wing with linear structural model, results are validate against a time accurate CFD-FEM code. The results show the model is able to replicate the aerodynamic forces and flow fields with sufficient accuracy while requiring a fraction of CFD cost.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a method based on both preprocessing and data mining with the objective of identify harmonic current sources in residential consumers. In addition, this methodology can also be applied to identify linear and nonlinear loads. It should be emphasized that the entire database was obtained through laboratory essays, i.e., real data were acquired from residential loads. Thus, the residential system created in laboratory was fed by a configurable power source and in its output were placed the loads and the power quality analyzers (all measurements were stored in a microcomputer). So, the data were submitted to pre-processing, which was based on attribute selection techniques in order to minimize the complexity in identifying the loads. A newer database was generated maintaining only the attributes selected, thus, Artificial Neural Networks were trained to realized the identification of loads. In order to validate the methodology proposed, the loads were fed both under ideal conditions (without harmonics), but also by harmonic voltages within limits pre-established. These limits are in accordance with IEEE Std. 519-1992 and PRODIST (procedures to delivery energy employed by Brazilian`s utilities). The results obtained seek to validate the methodology proposed and furnish a method that can serve as alternative to conventional methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An input variable selection procedure is introduced for the identification and construction of multi-input multi-output (MIMO) neurofuzzy operating point dependent models. The algorithm is an extension of a forward modified Gram-Schmidt orthogonal least squares procedure for a linear model structure which is modified to accommodate nonlinear system modeling by incorporating piecewise locally linear model fitting. The proposed input nodes selection procedure effectively tackles the problem of the curse of dimensionality associated with lattice-based modeling algorithms such as radial basis function neurofuzzy networks, enabling the resulting neurofuzzy operating point dependent model to be widely applied in control and estimation. Some numerical examples are given to demonstrate the effectiveness of the proposed construction algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper explains the conceptual design of instrumentation that measures electric quantities defined in the Std. 1459-2000. It is shown how the instantaneous-space-phasor approach, based on alpha, beta, 0 components, can be used to monitor electric energy flow, evaluate the utilization of transmission line, and quantify the level of harmonic pollution injected by nonlinear loads.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Smart microgrids offer a new challenging domain for power theories and metering techniques because they include a variety of intermittent power sources which positively impact on power flow and distribution losses but may cause voltage asymmetry and frequency variation. In smart microgrids, the voltage distortion and asymmetry in presence of poly-phase nonlinear loads can be also greater than in usual distribution lines fed by the utility, thus affecting measurement accuracy and possibly causing tripping of protections. In such a context, a reconsideration of power theories is required since they form the basis for supply and load characterization. A revision of revenue metering techniques is also suggested to ensure a correct penalization of the loads for their responsibility in generating reactive power, voltage asymmetry, and distortion. This paper shows that the conservative power theory provides a suitable background to cope with smart grids characterization and metering needs. Simulation and experimental results show the properties of the proposed approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The paper explains the conceptual design of instrumentation that measures electric quantities defined in the trial-use Std. 1459-2000. It is shown how the Instantaneous-Space-Phasor (ISP) approach, based on α, β, 0 components, can be used to monitor electric energy flow, evaluate the utilization of transmission line and quantify the level of harmonic pollution injected by nonlinear loads.