985 resultados para Nonlinear behavior


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a continuum Dirac theory, we study the density and spin response of zigzag edge-terminated graphene ribbons subjected to edge potentials and Zeeman fields. Our analytical calculations of the density and spin responses of the closed system (fixed particle number) to the static edge fields, show a highly nonlinear Weber-Fechner type behavior where the response depends logarithmically on the edge potential. The dependence of the response on the size of the system (e.g., width of a nanoribbon) is also uncovered. Zigzag edge graphene nanoribbons, therefore, provide a realization of response of organs such as the eye and ear that obey Weber-Fechner law. We validate our analytical results with tight-binding calculations. These results are crucial in understanding important effects of electron-electron interactions in graphene nanoribbons such as edge magnetism, etc., and also suggest possibilities for device applications of graphene nanoribbons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have calculated and discussed in detail the nonlinear effect induced by three carrier effects: free-carrier absorption, bandgap filling, and bandgap shrinkage. The central wavelength of response of resonant-cavity-enhanced (RCE) photodetectors shifts according to the change of the refractive index, and the response of a given optical wavelength simultaneously changes.With an increasing As composition of ln(1-x)Ga(x)As(y)P(1-y) and the spacer thickness, the nonlinear effect increases, but the -1-dB input saturation optical power and the -1-dB saturation photocurrent decrease. Bistable-state operation occurs when the input optical power is in the proper bistable region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nonlinear response of a ferroic to an applied field has been studied through the phenomenological Rayleigh Law for over a hundred years. Yet, despite this, the fundamental physical mechanisms at the nanoscale that lead to macroscopic Rayleigh behavior have remained largely elusive, and experimental evidence at small length scales is limited. Here, it is shown using a combination of scanning probe techniques and phase field modeling, that nanoscale piezoelectric response in prototypical Pb(Zr,Ti)O3 films appears to follow a distinctly non-Rayleigh regime. Through statistical analysis, it is found that an averaging of local responses can lead directly to Rayleigh-like behavior of the strain on a macroscale. Phase-field modeling confirms the twist of the ferroelastic interface is key in enhancing piezoelectric response. The studies shed light on the nanoscale origins of nonlinear behavior in disordered ferroics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was made on the effect of the addition of BaO (0.025-0.05 mol%) and Bi2O3 (0.025-0.05 mol%) to the TiO2.Ta2O5.MnO2 material. The samples were characterized by X-ray diffraction, and current-voltage measurements were accomplished for determination of the nonlinear coefficient. An analysis was made to evaluate the microstructural characteristics of the materials. The most appropriate sintering conditions for the materials were analyzed with the purpose of obtaining the best nonlinear coefficient associated with the smallest breakdown electric field. After sintering at 1400 degreesC for 2 h, a low-voltage (30 V cm(-1)) varistor was obtained, which, however, presented a low nonlinear coefficient (6). It was found that the sintering conditions must be controlled in order to improve the electrical properties of these materials. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The linearity assumption in the structural dynamics analysis is a severe practical limitation. Further, in the investigation of mechanisms presented in fighter aircrafts, as for instance aeroelastic nonlinearity, friction or gaps in wing-load-payload mounting interfaces, is mandatory to use a nonlinear analysis technique. Among different approaches that can be used to this matter, the Volterra theory is an interesting strategy, since it is a generalization of the linear convolution. It represents the response of a nonlinear system as a sum of linear and nonlinear components. Thus, this paper aims to use the discrete-time version of Volterra series expanded with Kautz filters to characterize the nonlinear dynamics of a F-16 aircraft. To illustrate the approach, it is identified and characterized a non-parametric model using the data obtained during a ground vibration test performed in a F-16 wing-to-payload mounting interfaces. Several amplitude inputs applied in two shakers are used to show softening nonlinearities presented in the acceleration data. The results obtained in the analysis have shown the capability of the Volterra series to give some insight about the nonlinear dynamics of the F-16 mounting interfaces. The biggest advantage of this approach is to separate the linear and nonlinear contributions through the multiple convolutions through the Volterra kernels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nonlinear absorption and refraction phenomena in stoichiometric lithium niobate (SLN) pure and co-doped with Zn and Nd, and congruent lithium niobate (CLN) were investigated using Z-scan technique. Femtosecond laser pulses from Ti:Sapphire laser (800 nm, 110 fs pulse width and 1 kHz repetition rate) were utilized for the experiment. The process responsible for nonlinear behavior of the samples was identified to be three photon absorption (3PA). This is in agreement with the band gap energies of the samples obtained from the linear absorption cut off and the slope of the plot of Ln(1 − TOA) vs. Ln(I0) using Sutherland’s theory (s = 2.1, for 3PA). The nonlinear refractive index (n2) of Zn doped samples was found to be lower than that of pure samples. Our experiments show that there exists a correlation between the nonlinear properties and the stoichiometry of the samples. The values of n2 fall into the same range as those obtained for the materials of similar band gap.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Despite being the stiffest airway of the bronchial tree, the trachea undergoes significant deformation due to intrathoracic pressure during breathing. The mechanical properties of the trachea affect the flow in the airway and may contribute to the biological function of the lung. Method: A Fung-type strain energy density function was used to investigate the nonlinear mechanical behavior of tracheal cartilage. A bending test on pig tracheal cartilage was performed and a mathematical model for analyzing the deformation of tracheal cartilage was developed. The constants included in the strain energy density function were determined by fitting the experimental data. Result: The experimental data show that tracheal cartilage is a nonlinear material displaying higher strength in compression than in tension. When the compression forces varied from -0.02 to -0.03 N and from -0.03 to -0.04 N, the deformation ratios were 11.03±2.18% and 7.27±1.59%, respectively. Both were much smaller than the deformation ratios (20.01±4.49%) under tension forces of 0.02 to 0.01 N. The Fung-type strain energy density function can capture this nonlinear behavior very well, whilst the linear stress-strain relation cannot. It underestimates the stability of trachea by exaggerating the displacement in compression. This study may improve our understanding of the nonlinear behavior of tracheal cartilage and it may be useful for the future study on tracheal collapse behavior under physiological and pathological conditions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonlinear behavior varying with the instantaneous response was analyzed through the joint time-frequency analysis method for a class of S. D. O. F nonlinear system. A masking operator an definite regions is defined and two theorems are presented. Based on these, the nonlinear system is modeled with a special time-varying linear one, called the generalized skeleton linear system (GSLS). The frequency skeleton curve and the damping skeleton curve are defined to describe the main feature of the non-linearity as well. Moreover, an identification method is proposed through the skeleton curves and the time-frequency filtering technique.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The joint time-frequency analysis method is adopted to study the nonlinear behavior varying with the instantaneous response for a class of S.D.O.F nonlinear system. A time-frequency masking operator, together with the conception of effective time-frequency region of the asymptotic signal are defined here. Based on these mathematical foundations, a so-called skeleton linear model (SLM) is constructed which has similar nonlinear characteristics with the nonlinear system. Two skeleton curves are deduced which can indicate the stiffness and damping in the nonlinear system. The relationship between the SLM and the nonlinear system, both parameters and solutions, is clarified. Based on this work a new identification technique of nonlinear systems using the nonstationary vibration data will be proposed through time-frequency filtering technique and wavelet transform in the following paper.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A general incremental micromechanical scheme for the nonlinear behavior of particulate composites is presented in this paper. The advantage of this scheme is that it can reflect partly the effects of the third invariant of the stress on the overall mechanical behavior of nonlinear composites. The difficulty involved is the determination of the effective compliance tensors of the anisotropic multiphase composites. This is completed by making use of the generalized self-consistent Mori-Tanaka method which was recently developed by Dai et al. (Polymer Composites 19(1998) 506-513; Acta Mechanica Solida 18 (1998) 199-208). Comparison with existing theoretical and numerical results demonstrates that the present incremental scheme is quite satisfactory. Based on this incremental scheme, the overall mechanical behavior of a hard-particle reinforced metal matrix composite with progressive particle debonding damage is investigated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cell adhesion, which is mediated by the receptor-ligand bonds, plays an essential role in various biological processes. Previous studies often described the force-extension relationship of receptor-ligand bond with linear assumption. However, the force-extension relationship of the bond is intrinsically nonlinear, which should have significant influence on the mechanical behavior of cell adhesion. In this work, a nonlinear mechanical model for cell adhesion is developed, and the adhesive strength was studied at various bond distributions. We find that the nonlinear mechanical behavior of the receptor-ligand bonds is crucial to the adhesive strength and stability. This nonlinear behavior allows more bonds to achieve large bond force simultaneously, and therefore the adhesive strength becomes less sensitive to the change of bond density at the outmost periphery of the adhesive area. In this way, the strength and stability of cell adhesion are soundly enhanced. The nonlinear model describes the cell detachment behavior better than the linear model. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The shear strength of soils or rocks developed in a landslide usually exhibits anisotropic and nonlinear behavior. The process of sedimentation and subsequent consolidation can cause anisotropy of sedimentary soils or rocks, for instance. Nonlinearity of failure envelope could be attributed to "interlocking" or "dilatancy" of the material, which is generally dependent upon the stress level. An analytical method considering both anisotropy and nonlinearity of the failure envelops of soil and rocks is presented in the paper. The nonlinearfailure envelopes can be determined from routine triaxial tests. A spreadsheet program, which uses the Janbu's Generalized Procedure of Slice and incorporates anisotropic, illustrates the implementation of the approach and nonlinearfailure envelops. In the analysis, an equivalent Mohr-Coulomb linear failure criterion is obtained by drawing a tangent to the nonlinear envelope of an anisotropic soil at an appropriate stress level. An illustrative example is presented to show the feasibility and numerical efficiency of the method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.