999 resultados para Nonlinear Resistance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a resistively shunted Josephson junction with a resistance that depends inversely on voltage. It is shown that such a junction in the underdamped case can give rise to extremely long-lived metastable states even in the absence of external noise. We investigate numerically this metastable state and its transition to a chaotic state. The junction voltages corresponding to these states are studied.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The perturbation expansion method is used to find the effective thermal conductivity of graded nonlinear composites having thermal contact resistance on the inclusion surface. As an example, we have studied the graded composites with cylindrical inclusions immersed in a homogeneous matrix. The thermal conductivity of the cylindrical inclusion is assumed to have a power-law profile of the radial distance r measured from its origin. For weakly nonlinear constitutive relations between the heat flow density q and the temperature field T, namely, q = -mu del T - chi vertical bar del T vertical bar(2) del T, in both the inclusion and the matrix regions, we have derived the temperature distributions using the perturbation expansion method. A nonlinear effective medium approximation of graded composites is proposed to estimate the effective linear and nonlinear thermal conductivities. by considering the temperature singularity on the inclusion surface due to the heat contact resistance. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new mode of driven nonlinear vibrations of a stretched string is investigated with reference to conditions of existence, properties, and regions of stability. It is shown that this mode exhibits negative resistance properties at all frequencies and driving force amplitudes. Discovery of this mode helps to fill certain gaps in the theory of forced nonlinear vibrations of strings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current versus voltage characteristics (I-V) of nanocrystalline SnO2 materials have been investigated in air at room temperature. The samples were prepared by the inert gas condensation technique (IGCT) as well as by chemical methods. X-ray diffraction studies showed a tetragonal rutile structure for all the samples. Microstructural studies were performed with transmission electron microscopy. All the samples exhibited nonlinear I-V characteristics of the current-controlled negative resistance (CCNR) type. The results show that the threshold field (break down) voltage is higher for the samples prepared by the IGCT method than for those prepared by the chemical method due to the formation of a tin oxide layer over the crystalline tin. It is also found that the threshold field increases with the decrease in grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear conduction in a single crystal of charge-ordered Pr0.63Ca0.37MnO3 has bren investigated in an applied magnetic field. In zero field, the nonlinear conduction, which starts at T< T-CO, can give rise to a region of negative differential resistance (NDR) which shows up below the Neel temperature. Application of a magnetic field Inhibits the appearance of NDR and makes the nonlinear conduction strongly hysteritic on cycling of the bias current. This is most severe in the temperature range where the charge-ordered state melts in an applied magnetic field. Our experiment strongly suggests that application of a magnetic field in the charge-ordering regime causes a coexistence of two phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The fracture properties of different concrete-concrete interfaces are determined using the Bazant's size effect model. The size effect on fracture properties are analyzed using the boundary effect model proposed by Wittmann and his co-workers. The interface properties at micro-level are analyzed through depth sensing micro-indentation and scanning electron microscopy. Geometrically similar beam specimens of different sizes having a transverse interface between two different strengths of concrete are tested under three-point bending in a closed loop servo-controlled machine with crack mouth opening displacement control. The fracture properties such as, fracture energy (G(f)), length of process zone (c(f)), brittleness number (beta), critical mode I stress intensity factor (K-ic), critical crack tip opening displacement CTODc (delta(c)), transitional ligament length to free boundary (a(j)), crack growth resistance curve and micro-hardness are determined. It is seen that the above fracture properties decrease as the difference between the compressive strength of concrete on either side of the interface increases. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Donor-doped n-BaTiO3 polycrystalline ceramics show a strong negative temperature coefficient of resistivity below the orthorhombic-rhombohedral phase transition point, from 10(2-3) Omega cm af 190 K to 10(10-13) Omega cm at less than or similar to 50 K, with thermal coefficient of resistance alpha = 20-23% K-1. Stable thermal sensors for low-temperature applications are realized therefrom. The negative temperature coefficient of resistivity region can be modified by substituting isovalent ions in the lattice. Highly nonlinear current-voltage (I-V) curves are observed at low temperatures, with a voltage maximum followed by the negative differential resistance. The I-V curves are sensitive to dissipation so that cryogenic sensors can be fabricated for liquid level control, flow rate monitoring, radiation detection or in-rush voltage limitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a finite-element model is developed in which the nonlinear soil behavior is represented by a hyperbolic relation for static load condition and modified hyperbolic relation, which includes both degradation and gap for a cyclic load condition. Although batter piles are subjected to lateral load, the soil resistance is also governed by axial load, which is incorporated by considering the P-Δ moment and geometric stiffness matrix. By adopting the developed numerical model, static and cyclic load analyses are performed adopting an incremental-iterative procedure where the pile is idealized as beam elements and the soil as elastoplastic spring elements. The proposed numerical model is validated with published laboratory and field pile test results under both static and cyclic load conditions. This paper highlights the importance of the degradation factor and its influence on the soil resistance-displacement (p-y) curve, number of cycles of loading, and cyclic load response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear analysis of batter piles in soft clay is performed using the finite element technique. As the batter piles are not only governed by lateral load but also axial load, the effect of P- Delta moment and geometric stiffness matrix is included in the analysis. For implementing the nonlinear soil behavior, reduction in soil strength (degradation), and formation of gap with number of load cycles, a numerical model is developed where a hyperbolic relation is adopted for the soil in static condition and hyperbolic relation considering degradation and gap for cyclic load condition. The numerical model is validated with published experimental results for cyclic lateral loading and the hysteresis loops are developed to predict the load-deflection behavior and soil resistance behavior during consecutive cycles of loading. This paper highlights the importance of a rigorous degradation model for subsequent cycles of loading on the pile-soil system by a hysteretic representation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We employ nanoindentation coupled with electrical contact resistance measurements for simultaneous characterization of the electrical and mechanical behaviors of a cellular assembly of carbon nanotubes (CNTs). Experimental results reveal two different responses that correspond to relatively dense and porous regions of the cellular structure. Distinct nonlinear electron transport characteristics are observed, which mainly originate from diffusive conductance in the CNT structure. In the denser region, differential conductance shows asymmetric minima at lower bias, implying that conductivity mainly results from bulk tunneling. However, the porous regions show insignificant differential conduction as opposed to the denser region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By incorporating the variation of peak soil friction angle (phi) with mean principal stress (sigma(m)), the effect of pipe diameter (D) on the vertical uplift resistance of a long horizontal pipeline embedded in sand has been investigated. The analysis has been performed by using the lower bound finite-element limit analysis in combination with nonlinear optimization. Three well-defined phi versus sigma(m) curves reported from literature for different sands have been used. It is observed that for a given embedment ratio, with an increase in pipe diameter, the magnitude of the uplift factor (F-gamma) reduces quite significantly, which indicates the importance of considering scale effects while designing buried pipe lines. The scale effects have been found to become even more substantial with an increase in the embedment ratio. The analysis compares well with various theoretical results reported from literature. On the other hand, as compared to available centrifuge test results, the present analysis has been found to provide quite a higher magnitude of the uplift resistance when the theoretical prediction is based on peak soil friction angle. However, if the theoretical analysis is performed by using the friction angle that accounts for the progressive shear failure, the difference between the theoretical and centrifuge test results decreases quite significantly.(C) 2013 American Society of Civil Engineers.