926 resultados para Nonlinear Dynamics and Control
Resumo:
The dynamics of flexible systems, such as robot manipulators , mechanical chains or multibody systems in general, is becoming increasingly important in engineering. This article deals with some nonlinearities that arise in the study of dynamics and control of multibody systems in connection to large rotations. Specifically, a numerical scheme that adresses the conservation of fundamental constants is presented in order to analyse the control-structure interaction problems.
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
The nonlinear dynamic response and a nonlinear control method of a particular portal frame foundation for an unbalanced rotating machine with limited power (non-ideal motor) are examined. Numerical simulations are performed for a set of control parameters (depending on the voltage of the motor) related to the static and dynamic characteristics of the motor. The interaction of the structure with the excitation source may lead to the occurrence of interesting phenomena during the forward passage through the several resonance states of the systems. A mathematical model having two degrees of freedom simplifies the non-ideal system. The study of controlling steady-state vibrations of the non-ideal system is based on the saturation phenomenon due to internal resonance.
Resumo:
In this paper, we deal with the research of a vibrating model of an energy harvester device, including the nonlinearities in the model of the piezoelectric coupling and the non-ideal excitation. We show, using numerical simulations, in the analysis of the dynamic responses, that the harvested power is influenced by non-linear vibrations of the structure. Chaotic behavior was also observed, causing of the loss of energy throughout the simulation time. Using a perturbation technique, we find an approximate analytical solution for the non-ideal system. Then, we apply both two control techniques, to keep the considered system, into a stable condition. Both the State Dependent Ricatti Equation (SDRE) control as the feedback control by changing the energy of the oscillator, were efficient in controlling of the considered non-ideal system.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work, we analyzed a bifurcational behavior of a longitudinal flight nonlinear dynamics, taking as an example the F-8 aircraft Crusader. We deal with an analysis of high angles of attack in order to stabilize the oscillations; those were close to the critical angle of the aircraft, in the flight conditions, established. We proposed a linear optimal control design applied to the considered nonlinear aircraft model below angle of stall, taking into account regions of Hopf and saddled noddle bifurcations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This Special Issue presents a selection of papers initially presented at the 11th International Conference on Vibration Problems (ICOVP-2013), held from 9 to 12 September 2013 in Lisbon, Portugal. The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: “Vibration Problems in Vertical Transportation Systems”, “Nonlinear Dynamics, Chaos and Control of Elastic Structures” and “New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control”.
Resumo:
The population dynamics of stray dogs is simulated to assess the effects of sterilization and euthanasia. From simulations representing less than 5 years, sterilization is less efficient than euthanasia to reduce the stray dog population, considering similar rates, but the total number of sterilized dogs is less than the total number of euthanized dogs per km(2) per year. Over 20 years, both strategies have similar efficiency. Beyond a certain rate of dog abandonment, both strategies are inefficient.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of some distributed parameter systems.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)