981 resultados para Noninvasive temperature estimation
Resumo:
Aiming at time-spatial characterization of tissue temperature when ultrasound is applied for thermal therapeutic proposes two experiments were developed considering gel-based phantoms, one of them including an artificial blood vessel. The blood vessel was mimicking blood flow in a common carotid artery. For each experiment phantoms were heated by a therapeutic ultrasound (TU) device emitting different intensities (0.5, 1, 1.5, 1.8 W/cm2). Temperature was monitored by thermocouples and estimated through imaging ultrasound transducer's signals within specific special points inside the phantom. The temperature estimation procedure was based on temporal echo-shifts (TES), computed based on echo-shifts collected through image ultrasound (IU) transducer. Results show that TES is a reliable non-invasive method of temperature estimation, regardless the TU intensities applied. Presence of a pulsatile blood flow vessel in the focal point of TU transducer reduces thermal variation in more than 50%, also affecting the temperature variation in the surrounding area. In other words, vascularized tissues require longer ultrasound thermal therapeutic sessions or higher TU intensities and inclusion of IU in the therapeutic procedure enables non-invasive monitoring of temperature. © 2013 IEEE.
Resumo:
This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.
Resumo:
Tese dout., Engenharia electrónica e computação - Processamento de sinal, Universidade do Algarve, 2008
Resumo:
Roughly one in four breast cancer survivors report some degree of arm oedema. Lymphoedema is a build-up of excess lymph fluids in the tissues. Persistent lymphoedema leads to pain, diminished limb function, increased risk of infection, soft tissue fibrosis, and severe cases can be grossly disfiguring. From a mechanics perspective, the lymphoedemous tissue may be thought of as a two phase composite, consisting of both fluid and solid phases. Here we discuss the use of composites mixture theory to model the mechanics of lymphoedemous tissues. By treating the tissue as a fluid-solid composite, rules-of-mixtures may be used to estimate the effective moduli in terms of the properties of the individual components and their respective volume fractions in these two states.
Resumo:
In this paper, an open source solution for measurement of temperature and ultrasonic signals (RF-lines) is proposed. This software is an alternative to the expensive commercial data acquisition software, enabling the user to tune applications to particular acquisition architectures. The collected ultrasonic and temperature signals were used for non-invasive temperature estimation using neural networks. The existence of precise temperature estimators is an essential point aiming at the secure and effective applica tion of thermal therapies in humans. If such estimators exist then effective controllers could be developed for the therapeutic instrumentation. In previous works the time-shift between RF-lines echoes were extracted, and used for creation of neural networks estimators. The obtained estimators successfully represent the temperature in the time-space domain, achieving a maximum absolute error inferior to the threshold value defined for hyperthermia/diathermia applications.
Resumo:
This paper presents a comparison between a physical model and an artificial neural network model (NN) for temperature estimation inside a building room. Despite the obvious advantages of the physical model for structure optimisation purposes, this paper will test the performance of neural models for inside temperature estimation. The great advantage of the NN model is a big reduction of human effort time, because it is not needed to develop the structural geometry and structural thermal capacities and to simulate, which consumes a great human effort and great computation time. The NN model deals with this problem as a “black box” problem. We describe the use of the Radial Basis Function (RBF), the training method and a multi-objective genetic algorithm for optimisation/selection of the RBF neural network inputs and number of neurons.
Resumo:
The domain of thermal therapies applications can be improved with the development of accurate non-invasive timespatial temperature models. These models should represent the non-linear tissue thermal behaviour and be capable of tracking temperature at both time-instant and spatial position. If such estimators exist then efficient controllers for the therapeutic instrumentation could be developed, and the desired safety and effectiveness reached.
Resumo:
This paper describes the techniques used to obtain sea surface temperature (SST) retrievals from the Geostationary Operational Environmental Satellite 12 (GOES-12) at the National Oceanic and Atmospheric Administration’s Office of Satellite Data Processing and Distribution. Previous SST retrieval techniques relying on channels at 11 and 12 μm are not applicable because GOES-12 lacks the latter channel. Cloud detection is performed using a Bayesian method exploiting fast-forward modeling of prior clear-sky radiances using numerical weather predictions. The basic retrieval algorithm used at nighttime is based on a linear combination of brightness temperatures at 3.9 and 11 μm. In comparison with traditional split window SSTs (using 11- and 12-μm channels), simulations show that this combination has maximum scatter when observing drier colder scenes, with a comparable overall performance. For daytime retrieval, the same algorithm is applied after estimating and removing the contribution to brightness temperature in the 3.9-μm channel from solar irradiance. The correction is based on radiative transfer simulations and comprises a parameterization for atmospheric scattering and a calculation of ocean surface reflected radiance. Potential use of the 13-μm channel for SST is shown in a simulation study: in conjunction with the 3.9-μm channel, it can reduce the retrieval error by 30%. Some validation results are shown while a companion paper by Maturi et al. shows a detailed analysis of the validation results for the operational algorithms described in this present article.
Resumo:
We use a multiproxy approach to monitor changes in the vertical profile of the Indonesian Throughflow as well as monsoonal wind and precipitation patterns in the Timor Sea on glacial-interglacial, precessional, and suborbital timescales. We focus on an interval of extreme climate change and sea level variation: marine isotope (MIS) 6 to MIS 5e. Paleoproductivity fluctuations in the Timor Sea follow a precessional beat related to the intensity of the Australian (NW) monsoon. Paired Mg/Ca and d18O measurements of surface- and thermocline-dwelling planktonic foraminifers (G. ruber and P. obliquiloculata) indicate an increase of >4°C in both surface and thermocline water temperatures during Termination II. Tropical sea surface temperature changed synchronously with ice volume (benthic d18O) during deglaciation, implying a direct coupling of high- and low-latitude climate via atmospheric and/or upper ocean circulation. Substantial cooling and freshening of thermocline waters occurred toward the end of Termination II and during MIS 5e, indicating a change in the vertical profile of the Indonesian Throughflow from surface- to thermocline-dominated flow.
Resumo:
Carbon isotopically based estimates of CO2 levels have been generated from a record of the photosynthetic fractionation of 13C (epsilon p) in a central equatorial Pacific sediment core that spans the last ~255 ka. Contents of 13C in phytoplanktonic biomass were determined by analysis of C37 alkadienones. These compounds are exclusive products of Prymnesiophyte algae which at present grow most abundantly at depths of 70-90 m in the central equatorial Pacific. A record of the isotopic compostion of dissolved CO2 was constructed from isotopic analyses of the planktonic foraminifera Neogloboquadrina dutertrei, which calcifies at 70-90 m in the same region. Values of epsilon p, derived by comparison of the organic and inorganic delta values, were transformed to yield concentrations of dissolved CO2 (c e) based on a new, site-specific calibration of the relationship between epsilon p and c e. The calibration was based on reassessment of existing epsilon p versus c e data, which support a physiologically based model in which epsilon p is inversely related to c e. Values of PCO2, the partial pressure of CO2 that would be in equilibrium with the estimated concentrations of dissolved CO2, were calculated using Henry's law and the temperature determined from the alkenone-unsaturation index UK 37. Uncertainties in these values arise mainly from uncertainties about the appropriateness (particularly over time) of the site-specific relationship between epsilon p and 1/c e. These are discussed in detail and it is concluded that the observed record of epsilon p most probably reflects significant variations in Delta pCO2, the ocean-atmosphere disequilibrium, which appears to have ranged from ~110 µatm during glacial intervals (ocean > atmosphere) to ~60 µatm during interglacials. Fluxes of CO2 to the atmosphere would thus have been significantly larger during glacial intervals. If this were characteristic of large areas of the equatorial Pacific, then greater glacial sinks for the equatorially evaded CO2 must have existed elsewhere. Statistical analysis of air-sea pCO2 differences and other parameters revealed significant (p < 0.01) inverse correlations of Delta pCO2 with sea surface temperature and with the mass accumulation rate of opal. The former suggests response to the strength of upwelling, the latter may indicate either drawdown of CO2 by siliceous phytoplankton or variation of [CO2]/[Si(OH)4] ratios in upwelling waters.
Resumo:
During the six Heinrich Events of the last 70 ka episodic calving from the circum-Atlantic ice sheets released large numbers of icebergs into the North Atlantic. These icebergs and associated melt-water flux are hypothesized to have led to a shutdown of Atlantic Meridional Overturning Circulation (AMOC) and severe cooling in large parts of the Northern Hemisphere. However, due to the limited availability of high-resolution records the magnitude sea surface temperature (SST) changes related to the impact of Heinrich Events on the mid-latitude North Atlantic is poorly constrained. Here we present a record of UK37'-based SSTs derived from sediments of Integrated Ocean Drilling Project (IODP) Site U1313, located at the southern end of the ice-rafted debris (IRD)-belt in the mid-latitude North Atlantic (41°N). We demonstrate that all six Heinrich Events are associated with a rapid warming of surface waters by 2 to 4°C in a few thousand years. The presence of IRD leaves no doubt about the simultaneous timing and correlation between rapid surface water warming and Heinrich Events. We argue that this warming in the mid-latitude North Atlantic is related to a northward expansion of the subtropical gyre during Heinrich Events. As a wide-range of studies demonstrated that in the central IRD-belt Heinrich Events are associated with low SSTs, these results thus identify an anti-phased (seesaw) pattern in SSTs during Heinrich Events between the mid-latitude (warm) and northern North Atlantic (cold). This highlights the complex response of surface water characteristics in the North Atlantic to Heinrich Events that is poorly reproduced by fresh water hosing experiments and challenges the widely accepted view that within the IRD-belt of the North Atlantic Heinrich Events coincide with periods of low SSTs.
Resumo:
Hudson Strait (HS) Heinrich Events, ice-rafting events in the North Atlantic originating from the Laurentide ice sheet (LIS), are among the most dramatic examples of millennial-scale climate variability and have a large influence on global climate. However, it is debated as to whether the occurrence of HS Heinrich Events in the (eastern) North Atlantic in the geological record depends on greater ice discharge, or simply from the longer survival of icebergs in cold waters. Using sediments from Integrated Ocean Drilling Program (IODP) Site U1313 in the North Atlantic spanning the period between 960 and 320 ka, we show that sea surface temperatures (SSTs) did not control the first occurrence of HS Heinrich(-like) Events in the sedimentary record. Using mineralogy and organic geochemistry to determine the characteristics of ice-rafting debris (IRD), we detect the first HS Heinrich(-like) Event in our record around 643 ka (Marine Isotope Stage (MIS) 16), which is similar as previously reported for Site U1308. However, the accompanying high-resolution alkenone-based SST record demonstrates that the first HS Heinrich(-like) Event did not coincide with low SSTs. Thus, the HS Heinrich(-like) Events do indicate enhanced ice discharge from the LIS at the end of the Mid-Pleistocene Transition, not simply the survivability of icebergs due to cold conditions in the North Atlantic.