980 resultados para Noncollinear phase matching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a compact experimental realization of the interaction among five field modes in a chi((2)) nonlinear crystal. The classical evolution of the fields can be analytically described assuming that two of the fields play the role of nondepleted pumps. A peculiar behavior appears that has been experimentally verified. If one of the fields has a nonzero input amplitude, then the other two fields at the output are holographic replicas of the input signal. (C) 2004 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of noncollinear optical parametric amplification (NOPA) based on quasi-phase matching of periodically poled crystals are investigated, under the condition that the group velocity matching (GVM) of the signal and idler pulses is satisfied. Our study focuses on the dependence of the gain spectrum upon the noncollinear angle, crystal temperature, and crystal angle with periodically poled KTiOPO4 (PPKTP), periodically poled LiNbO3 (PPLN), and periodically poled LiTaO3 (PPLT), and the NOPA gain properties of the three crystals are compared. Broad gain bandwidth exists above 85 nm at a signal wavelength of 800 nm with a 532 nm pump pulse, with proper noncollinear angle and grating period at a fixed temperature for GVM. Deviation from the group-velocity-matched noncollinear angle can be compensated by accurately tuning the crystal angle or temperature with a fixed grating period for phase matching. Moreover, there is a large capability of crystal angle tuning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of noncollinear optical parametric amplification in periodically poled lithium niobate (PPLN) which is realized by quasi-phase matching (QPM) technology, we consider the possibility of semi-noncollinear phase matching between collinear and noncollinear geometries by tilting a PPLN-crystal's parallel grating at a sure angle. Numerical simulation with proper parameters shows that we can achieve a broader optical parametric amplification (OPA) bandwidth than that of noncollinear geometry. About 121 nm at a signal wavelength of 800 and 70 nm at a signal wavelength of 1064 nm under optimal conditions are obtained when the crystal length is 9 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gain properties of near-collinear degenerated phase-matched optical parametric amplification (OPA) using PPKTP crystal are investigated theoretically. The results indicate that the type-0 phase matching of PPKTP has larger accepted angle and better gain spectrum by tuning crystal temperature or rotating crystal angle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A technique for enhanced generation of selected high harmonics in a gas medium, in a high ionization limit, is proposed in this paper. An aperiodically corrugated hollow-core fiber is employed to modulate the intensity of the fundamental laser pulse along the direction of propagation, resulting in multiple quasi-phase-matched high harmonic emissions at the cutoff region. Simulated annealing (SA) algorithm is applied for optimizing the aperiodic hollow-core fiber. Our simulation shows that the yield of selected harmonics is increased equally by up to 2 orders of magnitude compared with no modulation and this permits flexible control of the quasi-phase-matched emission of selected harmonics by appropriate corrugation. (c) 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase-matching condition of high-order harmonic generation driven by intense few-cycle pulses could be controlled by adding second-harmonic pulses to change the ionization fraction of the gaseous medium. The harmonic generation efficiency could be improved by moving the phase-matching point with an all-optical control of the ionization fraction or a proper change of the confocal parameter. A specific order of harmonics could be easily controlled to reach phase matching at a fixed higher gas pressure by adding second-harmonic pulses with a suitable intensity. Such an all-optical phase-matching control was demonstrated to be dependent upon the temporal delay between the fundamental-wave and second harmonic pulses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two techniques are demonstrated to produce ultrashort pulse trains capable of quasi-phase-matching high-harmonic generation. The first technique makes use of an array of birefringent crystals and is shown to generate high-contrast pulse trains with constant pulse spacing. The second technique employs a grating-pair stretcher, a multiple-order wave plate, and a linear polarizer. Trains of up to 100 pulses are demonstrated with this technique, with almost constant inter-pulse separation. It is shown that arbitrary pulse separation can be achieved by introducing the appropriate dispersion. This principle is demonstrated by using an acousto-optic programmable dispersive filter to introduce third-and fourth-order dispersions leading to a linear and quadratic variation of the separation of pulses through the train. Chirped-pulse trains of this type may be used to quasi-phase-match high-harmonic generation in situations where the coherence length varies through the medium. (C) 2010 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved dual-gas quasi-phase matching (QPM) foil target for high harmonic generation (HHG) is presented. The target can be setup with 12 individual gas inlets each feeding multiple nozzles separated by a minimum distance of 10 μm. Three-dimensional gas density profiles of these jets were measured using a Mach-Zehnder Interferometer. These measurements reveal how the jets influence the density of gas in adjacent jets and how this leads to increased local gas densities. The analysis shows that the gas profiles of the jets are well defined up to a distance of about 300 μm from the orifice. This target design offers experimental flexibility, not only for HHG/QPM investigations, but also for a wide range of experiments due to the large number of possible jet configurations. We demonstrate the application to controlled phase tuning in the extreme ultraviolet using a 1 kHz-10 mJ-30 fs-laser system where interference between two jets in the spectral range from 17 to 30 nm was observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quasi-phase matching (QPM) can be used to increase the conversion efficiency of the high harmonic generation (HHG) process. We observed QPM with an improved dual-gas foil target with a 1 kHz, 10 mJ, 30 fs laser system. Phase tuning and enhancement were possible within a spectral range from 17 nm to 30 nm. Furthermore analytical calculations and numerical simulations were carried out to distinguish QPM from other effects, such as the influence of adjacent jets on each other or the laser gas interaction. The simulations were performed with a 3 dimensional code to investigate the phase matching of the short and long trajectories individually over a large spectral range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider plane waves propagating in quadratic nonlinear slab waveguides with nonlinear quasi-phase-matching gratings. We predict analytically and verify numerically the complete gain spectrum for transverse modulational instability, including hitherto undescribed higher-order gain bands. (C) 2004 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present modulation instability analysis including azimuthal perturbations of steady-state continuous wave (CW) propagation in multicore-fiber configurations with a central core. In systems with a central core, a steady CW evolution regime requires power-controlled phase matching, which offers interesting spatial-division applications. Our results have general applicability and are relevant to a range of physical and engineering systems, including high-power fiber lasers, optical transmission in multicore fiber, and systems of coupled nonlinear waveguides. © 2013 Optical Society of America.