948 resultados para Non-small cell lung cancer (NSCLC)
Resumo:
BACKGROUND: Gefitinib is active in patients with pretreated non-small-cell lung cancer (NSCLC). We evaluated the activity and toxicity of gefitinib first-line treatment in advanced NSCLC followed by chemotherapy at disease progression. PATIENTS AND METHODS: In all, 63 patients with chemotherapy-naive stage IIIB/IV NSCLC received gefitinib 250 mg/day. At disease progression, gefitinib was replaced by cisplatin 80 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1, 8 for up to six 3-week cycles. Primary end point was the disease stabilization rate (DSR) after 12 weeks of gefitinib. RESULTS: After 12 weeks of gefitinib, the DSR was 24% and the response rate (RR) was 8%. Median time to progression (TtP) was 2.5 months and median overall survival (OS) 11.5 months. Never smokers (n = 9) had a DSR of 56% and a median OS of 20.2 months; patients with epidermal growth factor receptor (EGFR) mutation (n = 4) had a DSR of 75% and the median OS was not reached after the follow-up of 21.6 months. In all, 41 patients received chemotherapy with an overall RR of 34%, DSR of 71% and median TtP of 6.7 months. CONCLUSIONS: First-line gefitinib monotherapy led to a DSR of 24% at 12 weeks in an unselected patients population. Never smokers and patients with EGFR mutations tend to have a better outcome; hence, further trials in selected patients are warranted.
Resumo:
Aim: One standard option in the treatment of stage IIIA/N2 NSCLC is neoadjuvant chemotherapy followed by surgery. We investigated in a randomized trial whether the addition of neoadjuvant radiotherapy would improve the outcome. Here we present the final results of this study. Methods: Patients (pts.) with pathologically proven, resectable stage IIIA/N2 NSCLC, performance status 0-1, and adequate organ function were randomized 1:1 to chemoradiation (CRT) with 3 cycles of neoadjuvant chemotherapy (cisplatin 100 mg/m2 and docetaxel 85 mg/m2 d1, q3weeks) followed by accelerated concomitant boost radiotherapy (RT) with 44 Gy in 22 fractions in 3 weeks, or neoadjuvant chemotherapy alone (CT), with subsequent surgery for all pts. The primary endpoint was event-free survival (EFS). Results: 232 pts. were randomized in 23 centers, the median follow-up was 53 months. Two thirds were men, median age was 60 years (range 37-76). Histology was squamous cell in 33%, adenocarcinoma in 43%. Response rate to CRT was 61% vs. 44% with CT. 85% of all pts. underwent surgery, 30-day postoperative mortality was 1%. The rate of complete resection was 91% (CRT) vs. 81% (CT) and the pathological complete remission (pCR) rate was 16% vs. 12%. The median EFS was 13.1 months (95% CI 9.9 - 23.5) for the CRT group vs. 11.8 months (95% CI 8.4 - 15.2) in the CT arm (p 0.665). The median overall survival (OS) with CRT was 37.1 months (95% CI 22.6 -50), with CT 26.1 months ( 95% CI 26.1 - 52.1, p 0.938). The local failure rate was 23% in both arms. In the CT arm 12 pts. were given postoperative radiotherapy (PORT) for R1 resection, 6 pts. received PORT in violation of the protocol. Pts. with a pCR, mediastinal downstaging to ypN0/1 and complete resection had a better outcome. Toxicity of chemotherapy was substantial, especially febrile neutropenia was common, whereas RT was well tolerated. Conclusions: This is the first completed phase III trial to evaluate the role of induction chemoradiotherapy and surgery, in comparison to neoadjuvant CT alone followed by surgery. RT was active, it increased response, complete resection and pCR rates. However, this failed to translate into an improvement of local control, EFS or OS. Notably, surgery after induction treatment was safe, including pneumonectomy. The overall survival rates of our neoadjuvant regimen are very encouraging, especially for a multicenter setting. Disclosure: M. Pless: Advisory Board for Sanofi; R. Cathomas: Advisory Board Sanofi D.C. Betticher: Advisory Board Sanofi. All other authors have declared no conflicts of interest.
Resumo:
This phase II trial aimed to evaluate feasibility and efficacy of a first-line combination of targeted therapies for advanced non-squamous NSCLC: bevacizumab (B) and erlotinib (E), followed by platinum-based CT at disease progression (PD).
Resumo:
PURPOSE: The cyclin D1 (CCND1) A870G gene polymorphism is linked to the outcome in patients with resectable non-small cell lung cancer (NSCLC). Here, we investigated the impact of this polymorphism on smoking-induced cancer risk and clinical outcome in patients with NSCLC stages I-IV. METHODS: CCND1 A870G genotype was determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) of DNA extracted from blood. The study included 244 NSCLC patients and 187 healthy control subjects. RESULTS: Patient characteristics were: 70% male, 77% smokers, 43% adenocarcinoma, and 27% squamous cell carcinoma. Eighty-one percent of the patients had stages III-IV disease. Median age at diagnosis was 60 years and median survival was 13 months. Genotype frequencies of patients and controls both conformed to the Hardy Weinberg equilibrium. The GG genotype significantly correlated with a history of heavy smoking (>or=40 py, P=0.02), and patients with this genotype had a significantly higher cigarette consumption than patients with AA/AG genotypes (P=0.007). The GG genotype also significantly correlated with tumor response or stabilization after a platinum-based first-line chemotherapy (P=0.04). Survival analysis revealed no significant differences among the genotypes. CONCLUSION: Evidence was obtained that the CCND1 A870G gene polymorphism modulates smoking-induced lung cancer risk. Further studies are required to explore the underlying molecular mechanisms and to test the value of this gene polymorphism as a predictor for platinum-sensitivity in NSCLC patients.
Resumo:
BACKGROUND: Gefitinib is active in patients with pretreated non-small-cell lung cancer (NSCLC). We evaluated the activity and toxicity of gefitinib first-line treatment in advanced NSCLC followed by chemotherapy at disease progression. PATIENTS AND METHODS: In all, 63 patients with chemotherapy-naive stage IIIB/IV NSCLC received gefitinib 250 mg/day. At disease progression, gefitinib was replaced by cisplatin 80 mg/m(2) on day 1 and gemcitabine 1250 mg/m(2) on days 1, 8 for up to six 3-week cycles. Primary end point was the disease stabilization rate (DSR) after 12 weeks of gefitinib. RESULTS: After 12 weeks of gefitinib, the DSR was 24% and the response rate (RR) was 8%. Median time to progression (TtP) was 2.5 months and median overall survival (OS) 11.5 months. Never smokers (n = 9) had a DSR of 56% and a median OS of 20.2 months; patients with epidermal growth factor receptor (EGFR) mutation (n = 4) had a DSR of 75% and the median OS was not reached after the follow-up of 21.6 months. In all, 41 patients received chemotherapy with an overall RR of 34%, DSR of 71% and median TtP of 6.7 months. CONCLUSIONS: First-line gefitinib monotherapy led to a DSR of 24% at 12 weeks in an unselected patients population. Never smokers and patients with EGFR mutations tend to have a better outcome; hence, further trials in selected patients are warranted.
Resumo:
Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^
Resumo:
Background: Non-small cell lung cancer (NSCLC) imposes a substantial burden on patients, health care systems and society due to increasing incidence and poor survival rates. In recent years, advances in the treatment of metastatic NSCLC have resulted from the introduction of targeted therapies. However, the application of these new agents increases treatment costs considerably. The objective of this article is to review the economic evidence of targeted therapies in metastatic NSCLC. Methods: A systematic literature review was conducted to identify cost-effectiveness (CE) as well as cost-utility studies. Medline, Embase, SciSearch, Cochrane, and 9 other databases were searched from 2000 through April 2013 (including update) for full-text publications. The quality of the studies was assessed via the validated Quality of Health Economic Studies (QHES) instrument. Results: Nineteen studies (including update) involving the MoAb bevacizumab and the Tyrosine-kinase inhibitors erlotinib and gefitinib met all inclusion criteria. The majority of studies analyzed the CE of first-line maintenance and second-line treatment with erlotinib. Five studies dealt with bevacizumab in first-line regimes. Gefitinib and pharmacogenomic profiling were each covered by only two studies. Furthermore, the available evidence was of only fair quality. Conclusion: First-line maintenance treatment with erlotinib compared to Best Supportive Care (BSC) can be considered cost-effective. In comparison to docetaxel, erlotinib is likely to be cost-effective in subsequent treatment regimens as well. The insights for bevacizumab are miscellaneous. There are findings that gefitinib is cost-effective in first- and second-line treatment, however, based on only two studies. The role of pharmacogenomic testing needs to be evaluated. Therefore, future research should improve the available evidence and consider pharmacogenomic profiling as specified by the European Medicines Agency. Upcoming agents like crizotinib and afatinib need to be analyzed as well. © Lange et al.
Resumo:
Immune checkpoint inhibitors (ICI) that target PD-1/PD-L1 have recently emerged as an integral component of front-line treatment in metastatic NSCLC patients. The PD-1 inhibitor pembrolizumab is approved as monotherapy for advanced NSCLC with a PD-L1 tumor proportion score (TPS) of ≥1% and in combination with platinum doublet chemotherapy regardless of PD-L1 expression level. However, responses to either regimen occur in only a minority of cases, and PD-L1 TPS is limited as a biomarker in predicting whether a cancer will respond to PD-1 inhibition alone or would be more likely to benefit from PD-1 inhibition plus chemotherapy. Additional biomarkers of immunotherapy efficacy, such as tumor mutational burden (TMB), have not been incorporated into routine clinical practice for treatment selection. The identification of patients who have the greatest likelihood of responding to immunotherapies is critical for guiding treatment decisions. IN addition, early indicators of response could theoretically prevent patients from staying on an ineffective therapy where they might experience complications due to disease progression or develop toxicities from unnecessary exposure to an inactive agent. The aim of this research project is to investigate the clinicopathologic and molecular determinant of response/resistance to the currently available immune checkpoint inhibitors, in order to identify therapeutic vulnerabilities that can be exploited to improve the clinical outcomes of patients with advanced NSCLC.
Resumo:
The aim of the study was to analyze the frequency of epidermal growth factor receptor (EGFR) mutations in Brazilian non-small cell lung cancer patients and to correlate these mutations with response to benefit of platinum-based chemotherapy in non-small cell lung cancer (NSCLC). Our cohort consisted of prospective patients with NSCLCs who received chemotherapy (platinum derivates plus paclitaxel) at the [UNICAMP], Brazil. EGFR exons 18-21 were analyzed in tumor-derived DNA. Fifty patients were included in the study (25 with adenocarcinoma). EGFR mutations were identified in 6/50 (12 %) NSCLCs and in 6/25 (24 %) adenocarcinomas; representing the frequency of EGFR mutations in a mostly self-reported White (82.0 %) southeastern Brazilian population of NSCLCs. Patients with NSCLCs harboring EGFR exon 19 deletions or the exon 21 L858R mutation were found to have a higher chance of response to platinum-paclitaxel (OR 9.67 [95 % CI 1.03-90.41], p = 0.047). We report the frequency of EGFR activating mutations in a typical southeastern Brazilian population with NSCLC, which are similar to that of other countries with Western European ethnicity. EGFR mutations seem to be predictive of a response to platinum-paclitaxel, and additional studies are needed to confirm or refute this relationship.
Resumo:
BACKGROUND: VeriStrat(®) is a serum proteomic test used to determine whether patients with advanced non-small cell lung cancer (NSCLC) who have already received chemotherapy are likely to have good or poor outcomes from treatment with gefitinib or erlotinib. The main objective of our retrospective study was to evaluate the role of VS as a marker of overall survival (OS) in patients treated with erlotinib and bevacizumab in the first line. PATIENTS AND METHODS: Patients were pooled from two phase II trials (SAKK19/05 and NTR528). For survival analyses, a log-rank test was used to determine if there was a statistically significant difference between groups. The hazard ratio (HR) of any separation was assessed using Cox proportional hazards models. RESULTS: 117 patients were analyzed. VeriStrat classified patients into two groups which had a statistically significant difference in duration of OS (p=0.0027, HR=0.480, 95% confidence interval: 0.294-0.784). CONCLUSION: VeriStrat has a prognostic role in patients with advanced, nonsquamous NSCLC treated with erlotinib and bevacizumab in the first line. Further work is needed to study the predictive role of VeriStrat for erlotinib and bevacizumab in chemotherapy-untreated patients.
Resumo:
Anaplastic lymphoma kinase (ALK) rearrangements represents a new driver oncogenic event in non-small cell lung cancer (NSCLC). ALK positive patients account for a 1-7% of NSCLC patients. The objective of this study is to know the prevalence and clinical characteristics of ALK positive patients in a cohort of NSCLC patients and to compare inmunohistochemistry with D5F3 monoclonal antibody with gold standard method fluorescence in situ hybridation