989 resultados para Non-redox doping
Resumo:
Department of Physics, Cochin University of Science and Technology
Resumo:
The thin films of TiO2 doped by Mn non-uniformly were prepared by sol-gel method under process control. In our preceding study, we investigated in detail, the effect of doping mode on the photocatalytic activity of TiO2 films showing that Mn non-uniform doping can greatly enhance the activity. In this study we looked at the effect of doping concentration on the photocatalytic activity of the TiO2 films. In this paper, the thin films were characterized by UV-vis spectrophotometer and electrochemical workstation. The activity of the photocatalyst was also evaluated by photocatalytic degradation rate of aqueous methyl orange under UV radiation. The results illustrate that the TiO2 thin film doped by Mn non-uniformly at the optimal dopant concentration (0.7 at %) is of the highest activity, and on the contrary, the activity of those doped uniformly is decreased. As a comparison, in 80 min, the degradation rate of methyl orange is 62 %, 12 % and 34 % for Mn non-uniform doping film (0.7 at %), the uniform doping film (0.7 at %) and pure titanium dioxide film, respectively. We have seen that, for the doping and the pure TiO2 films, the stronger signals of open circuit potential and transient photocurrent, the better photocatalytic activity. We also discusse the effect of dopant concentration on the photocatalytic activity of the TiO2 films in terms of effective separation of the photon-generated carriers in the semiconductor. (C) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.
Resumo:
Preparation and characterization of the fullerenes, C60 and C70, are described in detail, including the design of the generators fabricated locally. The characterization techniques employed are UV-visible, IR, Raman and C-13 NMR spectroscopies, scanning as well as transmission electron microscopy and mass spectrometry. The electron energy level diagram of C60 as well as the one-electron reductions of C60 and C70 leading to various anions are discussed. Electronic absorption spectra of C60- and C60(2-) are reported. Phase transitions from the plastic to the crystalline states of C60 and C70 are examined. Based on a C-13 NMR study in a mixture of nematic liquid crystals, it has been demonstrated that C60 retains its extraordinary symmetry in solution phase as well. Interaction of C60 and C70 with strong electron-donor molecules has been investigated employing cyclic voltammetry. Superconductivity of K(x)C60 has been studied by non-resonant microwave absorption; Na(x)C60 as well as K(c)C70 are shown to be non-superconducting. Doping C60 with iodine does not make it superconducting. Interaction of C60 with SbCl5 and liquid Br2 gives rise to halogenated products.
Resumo:
Multilayers of poly(diallyldimethylammonium chloride) (PDDA) and citrate capped Au nanoparticles (AuNPs) anchored on sodium 3-mercapto-1-propanesulfonate modified gold electrode by electrostatic layer-by-layer assembly (LbL) technique are shown to be an excellent architecture for the direct electrochemical oxidation of As(III) species. The growth of successive layers in the proposed LbL architecture is followed by atomic force microscopy, UV-vis spectroscopy, quartz crystal microbalance with energy dissipation, and electrochemistry. The first bilayer is found to show rather different physico-chemical characteristics as compared to the subsequent bilayers, and this is attributed to the difference in the adsorption environments. The analytical utility of the architecture with five bilayers is exploited for arsenic sensing via the direct electrocatalytic oxidation of As(III), and the detection limit is found to be well below the WHO guidelines of 10 ppb. When the non-redox active PDDA is replaced by the redoxactive Os(2,2'-bipyridine)(2)Cl-poly(4-vinylpyridine) polyelectrolyte (PVPOs) in the LbL assembly, the performance is found to be inferior, demonstrating that the redox activity of the polyelectrolyte is futile as far as the direct electro-oxidation of As(III) is concerned. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Intramolecular electron transfer in partially reduced cytochrome c oxidase has been studied by means of perturbed equilibrium techniques. We have prepared a three electron reduced, CO inhibited form of the enzyme in which cytochrome a and copper A are partially reduced an in intramolecular redox equilibrium. When these samples were photolyzed using a nitrogen laser (0.6 µs, 1.0 mJ pulses) changes in absorbance at 598 nm and 830 nm were observed which are consistent with a fast electron from cytochrome a to copper A. The absorbance changes at 598 nm have an apparent rate of 17,200 ± 1,700 s^(-1) (1σ), at pH 7.0 and 25.5 °C. These changes were not observed in either the CO mixed valence or CO inhibited fully reduced forms of the enzyme. The rate is fastest at about pH 8.0, and falls off in either direction, and there is a small, but clear temperature dependence. The process was also observed in the cytochrome c -- cytochrome c oxidase high affinity complex.
This rate is far faster than any rate measured or inferred previously for the cytochrome a -- copper A electron equilibration, but the interpretation of these results is hampered by the fact that the relaxation could only be followed during the time before CO became rebound to the oxygen binding site. The meaning of our our measured rate is discussed, along with other reported rates for this process. In addition, a temperature-jump experiment on the same system is discussed.
We have also prepared a partially reduced, cyanide inhibited form of the enzyme in which cytochrome a, copper A and copper B are partially reduced and in redox equilibrium. Warming these samples produced absorbance changes at 605 nm which indicate that cytochrome a was becoming more oxidized, but there were no parallel changes in absorbance at 830 nm as would be expected if copper A was becoming reduced. We concluded that electrons were being redistributed from cytochrome a to copper B. The kinetics of the absorbance changes at 605 nm were investigated by temperature-jump methods. Although a rate could not be resolved, we concluded that the process must occur with an (apparent) rate larger than 10,000 s^(-1).
During the course of the temperature-jump experiments, we also found that non-redox related, temperature dependent absorbance changes in fully reduced CO inhibited cytochrome c oxidase, and in the cyanide mixed valence enzyme, took place with an (apparent) rate faster that 30,000 s^(-1).
Resumo:
Atomic layer deposition (ALD) is now used in semiconductor fabrication lines to deposit nanometre-thin oxide films, and has thus enabled the introduction of high-permittivity dielectrics into the CMOS gate stack. With interest increasing in transistors based on high mobility substrates, such as GaAs, we are investigating the surface treatments that may improve the interface characteristics. We focus on incubation periods of ALD processes on III-V substrates. We have applied first principles Density Functional Theory (DFT) to investigate detailed chemistry of these early stages of growth, specifically substrate and ALD precursor interaction. We have modelled the ‘clean-up’ effect by which organometallic precursors: trimethylaluminium (TMA) or hafnium and titanium amides clean arsenic oxides off the GaAs surface before ALD growth of dielectric commences and similar effect on Si3N4 substrate. Our simulations show that ‘clean-up’ of an oxide film strongly depends on precursor ligand, its affinity to the oxide and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides (e.g. SiO2) to be cleaned-up. First principles study shows also that alkylamides are more susceptible to decomposition rather than migration on the oxide surface. This improved understanding of the chemical principles underlying ‘clean-up’ allows us to rationalize and predict which precursors will perform the reaction. The comparison is made between selection of metal chlorides, methyls and alkylamides precursors.
Resumo:
In order to widely use Ge and III-V materials instead of Si in advanced CMOS technology, the process and integration of these materials has to be well established so that their high mobility benefit is not swamped by imperfect manufacturing procedures. In this dissertation number of key bottlenecks in realization of Ge devices are investigated; We address the challenge of the formation of low resistivity contacts on n-type Ge, comparing conventional and advanced rapid thermal annealing (RTA) and laser thermal annealing (LTA) techniques respectively. LTA appears to be a feasible approach for realization of low resistivity contacts with an incredibly sharp germanide-substrate interface and contact resistivity in the order of 10 -7 Ω.cm2. Furthermore the influence of RTA and LTA on dopant activation and leakage current suppression in n+/p Ge junction were compared. Providing very high active carrier concentration > 1020 cm-3, LTA resulted in higher leakage current compared to RTA which provided lower carrier concentration ~1019 cm-3. This is an indication of a trade-off between high activation level and junction leakage current. High ION/IOFF ratio ~ 107 was obtained, which to the best of our knowledge is the best reported value for n-type Ge so far. Simulations were carried out to investigate how target sputtering, dose retention, and damage formation is generated in thin-body semiconductors by means of energetic ion impacts and how they are dependent on the target physical material properties. Solid phase epitaxy studies in wide and thin Ge fins confirmed the formation of twin boundary defects and random nucleation growth, like in Si, but here 600 °C annealing temperature was found to be effective to reduce these defects. Finally, a non-destructive doping technique was successfully implemented to dope Ge nanowires, where nanowire resistivity was reduced by 5 orders of magnitude using PH3 based in-diffusion process.
Resumo:
The antioxidant activity of flavonoids may involve their ability to complex body iron in non-redox-active forms. In this study, it was found that the catechol flavonoids rutin and quercetin are able to suppress redox-active labile plasma iron (LPI) in both buffered solution and in iron-overloaded sera. Both flavonoids are effective in loading the metal into the iron-transport protein transferrin. Iron derivatives of quercetin and rutin are able to permeate cell membranes, however, only free quercetin is able to gain access to the cytosol and decrease intracellular labile iron pools. These results suggest that the antioxidant activity of quercetin may be dependent on its ability to shuttle labile iron from cell compartments followed by its transfer to transferrin. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Soluble lead acid redox flow battery (SLRFB) offers a number of advantages. These advantages can be harnessed after problems associated with buildup of active material on. electrodes (residue) are resolved. A mathematical model is developed to understand residue formation in SLRFB. The model incorporates fluid flow, ion transport, electrode reactions, and non-uniform current distribution on electrode surfaces. A number of limiting cases are studied to conclude that ion transport and electrode reaction on anode simultaneously control battery performance. The model fits the reported cell voltage vs. time profiles very well. During the discharge cycle, the model predicts complete dissolution of deposited material from trailing edge side of the electrodes. With time, the active surface area of electrodes decreases rapidly. The corresponding increase in current density leads to precipitous decrease in cell potential before all the deposited material is dissolved. The successive charge-discharge cycles add to the residue. The model correctly captures the marginal effect of flow rate on cell voltage profiles, and identifies flow rate and flow direction as new variables for controlling residue buildup. Simulations carried out with alternating flow direction and a SLRFB with cylindrical electrodes show improved performance with respect to energy efficiency and residue buildup. (C) 2014 The Electrochemical Society. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The redox potentials of 25 cyclic nitroxides from four different structural classes (pyrrolidine, piperidine, isoindoline, and azaphenalene) were determined experimentally by cyclic voltammetry in acetonitrile, and also via high-level ab initio molecular orbital calculations. It is shown that the potentials are influenced by the type of ring system, ring substituents and/or groups surrounding the radical moiety. For the pyrrolidine, piperidine, and isoindolines there is excellent agreement (mean absolute deviation of 0.05 V) between the calculated and experimental oxidation potentials; for the azaphenalenes, however, there is an extraordinary discrepancy (mean absolute deviation of 0.60 V), implying that their one-electron oxidation might involve additional processes not considered in the theoretical calculations. This recently developed azaphenalene class of nitroxide represents a new variant of a nitroxide ring fused to an aromatic system and details of the synthesis of five derivatives involving differing aryl substitution are also presented.
Resumo:
Cerium ions (Ce3+) can beselectively doped into the TiO2(B) core of TiO2(B)/anatase core–shell nanofibers by means of a simple one-pot hydrothermal treatment of a starting material of hydrogen trititanate (H2Ti3O7) nanofibers. These Ce3+ ions (≈0.202 nm) are located on the (110) lattice planes of the TiO2(B) core in tunnels (width≈0.297 nm). The introduction of Ce3+ ions reduces the defects of the TiO2(B) core by inhibiting the faster growth of (110) lattice planes. More importantly, the redox potential of the Ce3+/Ce4+ couple (E0(Ce3+/Ce4+)=1.715 V versus the normal hydrogen electrode) is more negative than the valence band of TiO2(B). Therefore, once the Ce3+-doped nanofibers are irradiated by UV light, the doped Ce3+ ions in close vicinity to the interface between the TiO2(B) core and anatase nanoshell can efficiently trap the photogenerated holes. This facilitates the migration of holes from the anatase shell and leaves more photogenerated electrons in the anatase nanoshell, which results in a highly efficient separation of photogenerated charges in the anatase nanoshell. Hence, this enhanced charge-separation mechanism accelerates dye degradation and alcohol oxidation processes. The one-pot treatment doping strategy is also used to selectively dope other metal ions with variable oxidation states such as Co2+/3+ and Cu+/2+ ions. The doping substantially improves the photocatalytic activity of the mixed-phase nanofibers. In contrast, the doping of ions with an invariable oxidation state, such as Zn2+, Ca2+, or Mg2+, does not enhance the photoactivity of the mixed-phase nanofibers as the ions could not trap the photogenerated holes.
Resumo:
Sclerotinia sclerotiorum is a necrotrophic ascomycete fungus with an extremely broad host range. This pathogen produces the non-specific phytotoxin and key pathogenicity factor, oxalic acid (OA). Our recent work indicated that this fungus and more specifically OA, can induce apoptotic-like programmed cell death (PCD) in plant hosts, this induction of PCD and disease requires generation of reactive oxygen species (ROS) in the host, a process triggered by fungal secreted OA. Conversely, during the initial stages of infection, OA also dampens the plant oxidative burst, an early host response generally associated with plant defense. This scenario presents a challenge regarding the mechanistic details of OA function; as OA both suppresses and induces host ROS during the compatible interaction. In the present study we generated transgenic plants expressing a redox-regulated GFP reporter. Results show that initially, Sclerotinia (via OA) generates a reducing environment in host cells that suppress host defense responses including the oxidative burst and callose deposition, akin to compatible biotrophic pathogens. Once infection is established however, this necrotroph induces the generation of plant ROS leading to PCD of host tissue, the result of which is of direct benefit to the pathogen. In contrast, a non-pathogenic OA-deficient mutant failed to alter host redox status. The mutant produced hypersensitive response-like features following host inoculation, including ROS induction, callose formation, restricted growth and cell death. These results indicate active recognition of the mutant and further point to suppression of defenses by the wild type necrotrophic fungus. Chemical reduction of host cells with dithiothreitol (DTT) or potassium oxalate (KOA) restored the ability of this mutant to cause disease. Thus, Sclerotinia uses a novel strategy involving regulation of host redox status to establish infection. These results address a long-standing issue involving the ability of OA to both inhibit and promote ROS to achieve pathogenic success.
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
Lanthanum oxide (La2O3) nanostructured films are synthesized on a p-type silicon wafer by ablation of La2O3 pellet due to interaction with hot dense argon plasmas in a modified dense plasma focus (DPF) device. The nanostructured films are investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) spectra. SEM study shows the formation of nano-films having nano-size structures with the average nanostructures size ~25, ~53, and ~45 nm for one, two, and three DPF shots, respectively. The nanostructures sizes and morphology of nano-films are consistent between the AFM and SEM analyses. XRD spectra confirms nano-sized La2O3 with an average grain size ~34, ~51, and ~42 nm for one, two, and three DPF shots, respectively. The electrical properties such as current-voltage and capacitance-voltage (C-V) characteristics of the Al-La2O3-Si metal-oxide- semiconductor (MOS) capacitor structure are measured. The current conduction mechanism of the MOS capacitors is also demonstrated. The C-V characteristics are further used to obtain the electrical parameters such as the dielectric constant, oxide thickness, flat-band capacitance, and flat-band voltage of the MOS capacitors. These measurements demonstrate significantly lower leakage currents without any commonly used annealing or doping, thereby revealing a significant improvement of the MOS nanoelectronic device performance due to the incorporation of the DPF-produced La2O3 nano-films.