943 resultados para Non-parametric Tests
Resumo:
This paper examines the mean-reverting property of real exchange rates. Earlier studies have generally not been able to reject the null hypothesis of a unit-root in real exchange rates, especially for the post-Bretton Woods floating period. The results imply that long-run purchasing power parity does not hold. More recent studies, especially those using panel unit-root tests, have found more favorable results, however. But, Karlsson and Löthgren (2000) and others have recently pointed out several potential pitfalls of panel unit-root tests. Thus, the panel unit-root test results are suggestive, but they are far from conclusive. Moreover, consistent individual country time series evidence that supports long-run purchasing power parity continues to be scarce. In this paper, we test for long memory using Lo's (1991) modified rescaled range test, and the rescaled variance test of Giraitis, Kokoszka, Leipus, and Teyssière (2003). Our testing procedure provides a non-parametric alternative to the parametric tests commonly used in this literature. Our data set consists of monthly observations from April 1973 to April 2001 of the G-7 countries in the OECD. Our two tests find conflicting results when we use U.S. dollar real exchange rates. However, when non-U.S. dollar real exchange rates are used, we find only two cases out of fifteen where the null hypothesis of an unit-root with short-term dependence can be rejected in favor of the alternative hypothesis of long-term dependence using the modified rescaled range test, and only one case when using the rescaled variance test. Our results therefore provide a contrast to the recent favorable panel unit-root test results.
Resumo:
This paper deals with the estimation and testing of conditional duration models by looking at the density and baseline hazard rate functions. More precisely, we foeus on the distance between the parametric density (or hazard rate) function implied by the duration process and its non-parametric estimate. Asymptotic justification is derived using the functional delta method for fixed and gamma kernels, whereas finite sample properties are investigated through Monte Carlo simulations. Finally, we show the practical usefulness of such testing procedures by carrying out an empirical assessment of whether autoregressive conditional duration models are appropriate to oIs for modelling price durations of stocks traded at the New York Stock Exchange.
Resumo:
The paper proposes a new application of non-parametric statistical processing of signals recorded from vibration tests for damage detection and evaluation on I-section steel segments. The steel segments investigated constitute the energy dissipating part of a new type of hysteretic damper that is used for passive control of buildings and civil engineering structures subjected to earthquake-type dynamic loadings. Two I-section steel segments with different levels of damage were instrumented with piezoceramic sensors and subjected to controlled white noise random vibrations. The signals recorded during the tests were processed using two non-parametric methods (the power spectral density method and the frequency response function method) that had never previously been applied to hysteretic dampers. The appropriateness of these methods for quantifying the level of damage on the I-shape steel segments is validated experimentally. Based on the results of the random vibrations, the paper proposes a new index that predicts the level of damage and the proximity of failure of the hysteretic damper
Resumo:
To carry out an analysis of variance, several assumptions are made about the nature of the experimental data which have to be at least approximately true for the tests to be valid. One of the most important of these assumptions is that a measured quantity must be a parametric variable, i.e., a member of a normally distributed population. If the data are not normally distributed, then one method of approach is to transform the data to a different scale so that the new variable is more likely to be normally distributed. An alternative method, however, is to use a non-parametric analysis of variance. There are a limited number of such tests available but two useful tests are described in this Statnote, viz., the Kruskal-Wallis test and Friedmann’s analysis of variance.
Resumo:
If in a correlation test, one or both variables are small whole numbers, scores based on a limited scale, or percentages, a non-parametric correlation coefficient should be considered as an alternative to Pearson’s ‘r’. Kendall’s t and Spearman’s rs are similar tests but the former should be considered if the analysis is to be extended to include partial correlations. If the data contain many tied values, then gamma should be considered as a suitable test.
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Applying programming techniques to detailed data for 406 rice farms in 21 villages, for 1997, produces inefficiency measures, which differ substantially from the results of simple yield and unit cost measures. For the Boro (dry) season, mean technical efficiency was efficiency was 56.2 per cent and 69.4 per cent, allocative efficiency was 81.3 per cent, cost efficiency was 56.2 per cent and scale efficiency 94.9 per cent. The Aman (wet) season results are similar, but a few points lower. Allocative inefficiency is due to overuse of labour, suggesting population pressure, and of fertiliser, where recommended rates may warrant revision. Second-stage regressions show that large families are more inefficient, whereas farmers with better access to input markets, and those who do less off-farm work, tend to be more efficient. The information on the sources of inter-farm performance differentials could be used by the extension agents to help inefficient farmers. There is little excuse for such sub-optimal use of survey data, which are often collected at substantial costs.
Resumo:
We present a real data set of claims amounts where costs related to damage are recorded separately from those related to medical expenses. Only claims with positive costs are considered here. Two approaches to density estimation are presented: a classical parametric and a semi-parametric method, based on transformation kernel density estimation. We explore the data set with standard univariate methods. We also propose ways to select the bandwidth and transformation parameters in the univariate case based on Bayesian methods. We indicate how to compare the results of alternative methods both looking at the shape of the overall density domain and exploring the density estimates in the right tail.
Resumo:
Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.
Resumo:
AbstractLiterature has unveiled that a paper has not been published yet on using non-parametric stability statistics (NPSSs) for evaluating genotypic stability in dough properties of wheat. Accordingly, the effects of genotype (G), environment (E) and GE interaction (GEI) on alveograph parameters, i.e. dough baking strength (W) and its tenacity (P)/extensibility (L), of 18 wheat (T. aestivum L.) genotypes were studied under irrigated field conditions in an 8-year trial (2006-2014) in central Turkey. Furthermore, genotypic stability for W and P/L was determined using 8 NPSSs viz. RM-Rank mean, RSD-Rank’s standard deviation, RS-Rank Sum, TOP-Ranking, Si(1), Si(2), Si(3) and Si(6) rank statistics. The ANOVA revealed that W and P/L were primarily controlled by E, although G and GEI also had significant effects. Among the 8 NPSSs, only RM, RS and TOP statistics were suitable for detecting the genotypes with high stable and bread making quality (e.g. G1 and G17). In conclusion, using RM, RS and TOP statistics is advisable to select for dough quality in wheat under multi-environment trials (METs).
Resumo:
This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models