974 resultados para Non-linear Dynamics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a set of generic results on Hamiltonian non-linear dynamics. We show the necessary conditions for a Hamiltonian system to present a non-twist scenario and from that we introduce the isochronous resonances. The generality of these resonances is shown from the Hamiltonian given by the Birkhof-Gustavson normal form, which can be considered a toy model, and from an optic system governed by the non-linear map of the annular billiard. We also define a special kind of transport barrier called robust torus. The meanders and shearless curves are also presented and we show the most robust shearless barrier associated with the rotation numbers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a DC motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a non-ideal problem. In this work, we considerer two non-ideal problems analyzed by using numerical simulations. The existence of the Sommerfeld effect was verified, that is, the effect of getting stuck at resonance (energy imparted to the DC motor being used to excite large amplitude motions of the supporting structure). We considered two kinds of non-ideal problem: one related to the transverse vibrations of a shaft carrying two disks and another to a piezoceramic bar transducer powered by a vacuum tube generated by a non-ideal source Copyright © 2007 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents a solid-like finite element formulation to solve geometric non-linear three-dimensional inhomogeneous frames. To achieve the desired representation, unconstrained vectors are used instead of the classic rigid director triad; as a consequence, the resulting formulation does not use finite rotation schemes. High order curved elements with any cross section are developed using a full three-dimensional constitutive elastic relation. Warping and variable thickness strain modes are introduced to avoid locking. The warping mode is solved numerically in FEM pre-processing computational code, which is coupled to the main program. The extra calculations are relatively small when the number of finite elements. with the same cross section, increases. The warping mode is based on a 2D free torsion (Saint-Venant) problem that considers inhomogeneous material. A scheme that automatically generates shape functions and its derivatives allow the use of any degree of approximation for the developed frame element. General examples are solved to check the objectivity, path independence, locking free behavior, generality and accuracy of the proposed formulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes. (C) 2008 Elsevier Ltd. All rights reserved.