968 resultados para Non-ionic detergent


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is a base line attempt to investigate and assess the toxicities of three surfactants viz. anionic sodium dodecyl sulfate (SDS), non ionic Triton X-1OO (TX-IOO) and cationic cetyl trimethyl ammonium bromide (CTAB). These compounds represent simple members of the often neglected group of aquatic pollutants i.e. the anionic alkyl sulfates, non ionics and the cationics. These compounds are widely used In plastic industry, pesticide/herbicide formulations, detergents, oil spill dispersants, molluscicides etc. The test organisms selected for the present study are the cyanobacterium Synechocystis salina Wislouch representing a primary producer in the marine environment and a fresh water adapted euryhaline teleost Oreochromis mossambicus (peters) at the consumer level of the ecological pyramid. The fish species, though not indigenous to our country, is now found ubiquitously in fresh water systems and estuaries. Also it is highly resistant to pollutants and has been suggested as an indicator of pollution in tropical region .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant uptake of organic chemicals is an important process when considering the risks associated with land contamination, the role of vegetation in the global cycling of persistent organic pollutants, and the potential for industrial discharges to contaminate the food chain. There have been some significant advances in our understanding of the processes of plant uptake of organic chemicals in recent years; most notably there is now a better understanding of the air to plant transfer pathway, which may be significant for a number of industrial chemicals. This review identifies the key processes involved in the plant uptake of organic chemicals including those for which there is currently little information, e.g., plant lipid content and plant metabolism. One of the principal findings is that although a number of predictive models exist using established relationships, these require further validation if they are to be considered sufficiently robust for the purposes of contaminated land risk assessment or for prediction of the global cycling of persistent organic pollutants. Finally, a number of processes are identified which should be the focus of future research

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of a non-ionic polymeric surfactant on the self-assembly of a peptide amphiphile (PA) that forms nanotapes is investigated using a combination of microscopic, scattering and spectroscopic techniques. Mixtures of Pluronic copolymer P123 with the PA C16-KTTKS in aqueous solution were studied at a fixed concentration of the PA at which it is known to self-assemble into extended nanotapes, but varying P123 concentration. We find that P123 can disrupt the formation of C16- KTTKS nanotapes, leading instead to cylindrical nanofibril structures. The spherical micelles formed by P123 at room temperature are disrupted in the presence of the PA. There is a loss of cloudiness in the solutions as the large nanotape aggregates formed by C16-KTTKS are broken up, by P123 solubilization. At least locally, b-sheet structure is retained, as confirmed by XRD and FTIR spectroscopy, even for solutions containing 20 wt% P123. This indicates, unexpectedly, that peptide secondary structure can be retained in solutions with high concentration of non-ionic surfactant. Selfassembly in this system exhibits slow kinetics towards equilibrium, the initial self-assembly being dependent on the order of mixing. Heating above the lipid chain melting temperature assists in disrupting trapped non-equilibrium states.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic light scattering measurements have been made to elucidate changes in the coil conformation of a high molecular weight poly(ethylene oxide) (PEG) fraction when the non-ionic surfactant C(12)E(5) is present in dilute solutions. The measurements were made at 20 degrees C as functions of(a) the C(12)E(5) concentration at constant PEO concentration, (b) the PEO concentration at constant C(12)E(5) concentration, and (c) the C(12)E(5)/PEO concentration ratio. The influence of temperature on the interactions in terms of the relaxation time distributions was also examined up to the cloud point. It was found that when the C(12)E(5)/PEO weight ratio was >2 and when the temperature was >14 degrees C, the correlation functions became bimodal with well-separated components. The fast mode derives fi om individual surfactant micelles which are present in the solution at high number density. The appearance of the slow mode, which dominates the scattering, is interpreted as resulting from the formation of micellar clusters due to an excluded-volume effect when the high molar mass (M = 6 x 10(5)) PEO is added to the surfactant solution. It is shown that the micellar clusters form within the PEO coils and lead to a progressive swelling of the latter for steric reasons. The dimensions of the PEO/C(12)E(5) complex increase with increasing surfactant concentration to a value of R(H) approximate to 94 nm (R(g) approximate to 208 nm) at C-C12E5 = 3.5%. Fluorescence quenching measurements show that the average aggregation number of C(12)E(5) increases significantly on addition of the high molar mass PEG. With increasing temperature toward the cloud point the clusters increase in number density and/or become larger. The cloud point is substantially lower than that for C12E5 in water solution and is strongly dependent on the PEO concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare the effects on heart rate (HR), on left ventricular (LV) or arterial pressures, and the general safety of a non-ionic low-osmolar contrast medium (CM) and a non-ionic iso-osmolar CM in patients undergoing cardiac angiography (CA) or peripheral intra-arterial digital subtraction angiography (IA-DSA). MATERIALS AND METHODS: Two double-blind, randomized studies were conducted in 216 patients who underwent CA (n=120) or peripheral IA-DSA (n=96). Patients referred for CA received a low-osmolar monomeric CM (iomeprol-350, n=60) or an iso-osmolar dimeric CM (iodixanol-320; n=60). HR and LV peak systolic and end-diastolic pressures were determined before and after the first injection during left and right coronary arteriography and left ventriculography. Monitoring for all types of adverse event (AE) was performed for 24 h following the procedure. t-tests were performed to compare CM for effects on HR. Patients referred for IA-DSA received iomeprol-300 (n=49) or iodixanol-320 (n=47). HR and arterial blood pressure (BP) were evaluated before and after the first 4 injections. Monitoring for AE was performed for 4 h following the procedure. Repeated-measures ANOVA was used to compare mean HR changes across the first 4 injections, whereas changes after the first injection were compared using t-tests. RESULTS: No significant differences were noted between iomeprol and iodixanol in terms of mean changes in HR during left coronary arteriography (p=0.8), right coronary arteriography (p=0.9), and left ventriculography (p=0.8). In patients undergoing IA-DSA, no differences between CM were noted for effects on mean HR after the first injection (p=0.6) or across the first 4 injections (p=0.2). No significant differences (p>0.05) were noted in terms of effects on arterial BP in either study or on LV pressures in patients undergoing CA. Non-serious AE considered possibly CM-related (primarily headache and events affecting the cardiovascular and digestive systems) were reported more frequently by patients undergoing CA and more frequently after iodixanol (14/60 [23.3%] and 2/47 [4.3%]; CA and IA-DSA, respectively) than iomeprol (10/60 [16.7%] and 1/49 [2%], respectively). CONCLUSIONS: Iomeprol and iodixanol are safe and have equally negligible effects on HR and LV pressures or arterial BP during and after selective intra-cardiac injection and peripheral IA-DSA. CLINICAL APPLICATION: Iomeprol and iodixanol are safe and equally well tolerated with regard to cardiac rhythm and clinical preference should be based on diagnostic image quality alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the successful RAFT-mediated emulsion polymerization of styrene using a non-ionic surfactant (Brij98), the highly reactive 1-phenylethyl phenyldithioacetate (PEPDTA) RAFT agent, and water-soluble initiator ammonium persulfate (APS). The molar ratio of RAFT agent to APS was identical in all experiments. Most of the monomer was contained within the micelles, analogous to microemulsion or miniemulsion systems but without the need of shear, sonication, cosurfactant, or a hydrophobe. The number-average molecular weight increased with conversion and the polydispersity index was below 1.2. This ideal 'living' behavior was only found when molecular weights of 9000 and below were targeted. It was postulated that the rapid transportation of RAFT agent from the monomer swollen micelles to the growing particles was fast on the polymerization timescale, and most if not all the RAFT agent is consumed within the first 10% conversion. In addition, it was postulated that the high nucleation rate from the high rate of exit ( of the R radical from the RAFT agent) and high entry rate from water-phase radicals ( high APS concentration) reduced the effects of 'superswelling' and therefore a similar molar ratio of RAFT agent to monomer was maintained in all growing particles. The high polydispersity indexes found when targeting molecular weights greater than 9000 were postulated to be due to the lower nucleation rate from the lower weight fractions of both APS and RAFT agent. In these cases, 'superswelling' played a dominant role leading to a heterogeneous distribution of RAFT to monomer ratios among the particles nucleated at different times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this research was to investigate the molecular interactions occurring in the formulation of non-ionic surfactant based vesicles composed monopalmitoyl glycerol (MPG), cholesterol (Chol) and dicetyl phosphate (DCP). In the formulation of these vesicles, the thermodynamic attributes and surfactant interactions based on molecular dynamics, Langmuir monolayer studies, differential scanning calorimetry (DSC), hot stage microscopy and thermogravimetric analysis (TGA) were investigated. Initially the melting points of the components individually, and combined at a 5:4:1 MPG:Chol:DCP weight ratio, were investigated; the results show that lower (90 C) than previously reported (120-140 C) temperatures could be adopted to produce molten surfactants for the production of niosomes. This was advantageous for surfactant stability; whilst TGA studies show that the individual components were stable to above 200 C, the 5:4:1 MPG:Chol:DCP mixture show ∼2% surfactant degradation at 140 C, compared to 0.01% was measured at 90 C. Niosomes formed at this lower temperature offered comparable characteristics to vesicles prepared using higher temperatures commonly reported in literature. In the formation of niosome vesicles, cholesterol also played a key role. Langmuir monolayer studies demonstrated that intercalation of cholesterol in the monolayer did not occur in the MPG:Chol:DCP (5:4:1 weight ratio) mixture. This suggests cholesterol may support bilayer assembly, with molecular simulation studies also demonstrating that vesicles cannot be built without the addition of cholesterol, with higher concentrations of cholesterol (5:4:1 vs 5:2:1, MPG:Chol:DCP) decreasing the time required for niosome assembly. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamentals of this research were to exploit non-ionic surfactant technology for delivery and administration of vaccine antigens across the oral route and to gain a better understanding of vaccine trafficking. Using a newly developed method for manufacture of non-ionic surfactant vesicles (niosomes and bilosomes) lower process temperatures were adopted thus reducing antigen exposure to potentially damaging conditions. Vesicles prepared by this method offered high protection to enzymatic degradation, with only ~10 % antigen loss measured when vesicles incorporating antigen were exposed to enzyme digestion. Interestingly, when formulated using this new production method, the addition of bile salt to the vesicles offered no advantage in terms of stability within simulated gastro-intestinal conditions. Considering their ability to deliver antigen to their target site, results demonstrated that incorporation of antigen within vesicles enhanced delivery and targeting of the antigen to the Peyer's Patch, again with niosomes and bilosomes offering similar efficiency. Delivery to both the Peyer's patches and mesentery lymphatics was shown to be dose dependent at lower concentrations, with saturation kinetics applying at higher concentrations. This demonstrates that in the formulation of vaccine delivery systems, the lipid/antigen dose ratio is not only a key factor in production cost, but is equally a key factor in the kinetics of delivery and targeting of a vaccine system. © 2013 Controlled Release Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A protocol to produce large amounts of bioactive homogeneous human interferon β1 expressed in Escherichia coli was developed. Human interferon β1 ser17 gene was constructed, cloned and subcloned, and the recombinant protein expressed in E. coli cells. Solubilization of recombinant human interferon β1 ser17 (rhIFN-β1 ser17) was accomplished by employing a brief shift to high alkaline pH in the presence of non-ionic detergent. The recombinant protein was purifi ed by three chromatographic steps. N-terminal amino acid sequencing and mass spectrometry analysis provided experimental evidence for the identity of the recombinant protein. Reverse phase liquid chromatography demonstrated that the content of deamidates and sulphoxides was similar to a commercial standard. Size exclusion chromatography demonstrated the absence of high molecular mass aggregates and dimers. The protocol represents an effi cient and high-yield method to obtain bioactive homogeneous monomeric rhIFN-β1 ser17 protein. It may thus represent an important step towards scaling up for rhIFN-β1 ser17 large-scale production. © 2010 Villela AD, et al.