948 resultados para Non-enveloped Virus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento, Ciências Biomédicas (Bioquímica Médica), Universidade de Lisboa, Faculdade de Medicina, 2016

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences-Biotechnology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enveloped virus release is driven by poorly understood proteins that are functional analogs of the coat protein assemblies that mediate intracellular vesicle trafficking. We used differential electron density mapping to detect membrane integration by membrane-bending proteins from five virus families. This demonstrates that virus matrix proteins replace an unexpectedly large portion of the lipid content of the inner membrane face, a generalized feature likely to play a role in reshaping cellular membranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shrimp farming is one of the activities that contribute most to the growth of global aquaculture. However, this business has undergone significant economic losses due to the onset of viral diseases such as Infectious Myonecrosis (IMN). The IMN is already widespread throughout Northeastern Brazil and affects other countries such as Indonesia, Thailand and China. The main symptom of disease is myonecrosis, which consists of necrosis of striated muscles of the abdomen and cephalothorax of shrimp. The IMN is caused by infectious myonecrosis virus (IMNV), a non-enveloped virus which has protrusions along its capsid. The viral genome consists of a single molecule of double-stranded RNA and has two Open Reading Frames (ORFs). The ORF1 encodes the major capsid protein (MCP) and a potential RNA binding protein (RBP). ORF2 encodes a probable RNA-dependent RNA polymerase (RdRp) and classifies IMNV in Totiviridae family. Thus, the objective of this research was study the IMNV complete genome and encoded proteins in order to develop a system differentiate virus isolates based on polymorphisms presence. The phylogenetic relationship among some totivirus was investigated and showed a new group to IMNV within Totiviridae family. Two new genomes were sequenced, analyzed and compared to two other genomes already deposited in GenBank. The new genomes were more similar to each other than those already described. Conserved and variable regions of the genome were identified through similarity graphs and alignments using the four IMNV sequences. This analyze allowed mapping of polymorphic sites and revealed that the most variable region of the genome is in the first half of ORF1, which coincides with the regions that possibly encode the viral protrusion, while the most stable regions of the genome were found in conserved domains of proteins that interact with RNA. Moreover, secondary structures were predicted for all proteins using various softwares and protein structural models were calculated using threading and ab initio modeling approaches. From these analyses was possible to observe that the IMNV proteins have motifs and shapes similar to proteins of other totiviruses and new possible protein functions have been proposed. The genome and proteins study was essential for development of a PCR-based detection system able to discriminate the four IMNV isolates based on the presence of polymorphic sites

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Dicistroviridae is a new family of small, non-enveloped, +ssRNA viruses pathogenic to both beneficial arthropods and insect pests. Little is known about the dicistrovirus replication mechanism or gene function, and any knowledge on these subjects comes mainly from comparisons with mammalian viruses from the Picornaviridae family. Due to its peculiar genome organization and characteristics of the per os viral transmission route, dicistroviruses make good candidates for use as biopesticides. Triatoma virus (TrV) is a pathogen of Triatoma infestans (Hemiptera: Reduviidae), one of the main vectors of the human trypanosomiasis disease called Chagas disease. TrV was postulated as a potential control agent against Chagas' vectors. Although there is no evidence that TrV nor other dicistroviruses replicate in species outside the Insecta class, the innocuousness of these viruses in humans and animals needs to be ascertained. Methods: In this study, RT-PCR and ELISA were used to detect the infectivity of this virus in Mus musculus BALB/c mice. Results: In this study we have observed that there is no significant difference in the ratio IgG2a/IgG1 in sera from animals inoculated with TrV when compared with non-inoculated animals or mice inoculated only with non-infective TrV protein capsids. Conclusions: We conclude that, under our experimental conditions, TrV is unable to replicate inmice. This study constitutes the first test to evaluate the infectivity of a dicistrovirus in a vertebrate animal model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sindbis virus (SINV) (genus Alphavirus, family Togaviridae) is an enveloped virus with a genome of single-stranded, positive-polarity RNA of 11.7 kilobases. SINV is widespread in Eurasia, Africa, and Australia, but clinical infection only occurs in a few geographically restricted areas, mainly in Northern Europe. In Europe, antibodies to SINV were detected from patients with fever, rash, and arthritis for the first time in the early 1980s in Finland. It became evident that the causative agent of this syndrome, named Pogosta disease, was closely related to SINV. The disease is also found in Sweden (Ockelbo disease) and in Russia (Karelian fever). Since 1974, for unknown reason, the disease has occurred as large outbreaks every seven years in Finland. This study is to a large degree based on the material collected during the 2002 Pogosta disease outbreak in Finland. We first developed SINV IgM and IgG enzyme immunoassays (EIA), based on highly purified SINV, to be used in serodiagnostics. The EIAs correlated well with the hemagglutination inhibition (HI) test, and all individuals showed neutralizing antibodies. The sensitivities of the IgM and IgG EIAs were 97.6% and 100%, and specificities 95.2% and 97.6%, respectively. E1 and E2 envelope glycoproteins of SINV were shown to be recognized by IgM and IgG in the immunoblot early in infection. We isolated SINV from five patients with acute Pogosta disease; one virus strain was recovered from whole blood, and four other strains from skin lesions. The etiology of Pogosta disease was confirmed by these first Finnish SINV strains, also representing the first human SINV isolates from Europe. Phylogenetic analysis indicated that the Finnish SINV strains clustered with the strains previously isolated from mosquitoes in Sweden and Russia, and seemed to have a common ancestor with South-African strains. Northern European SINV strains could be maintained locally in disease-endemic regions, but the phylogenetic analysis also suggests that redistribution of SINV tends to occur in a longitudinal direction, possibly with migratory birds. We searched for SINV antibodies in resident grouse (N=621), whose population crashes have previously coincided with human SINV outbreaks, and in migratory birds (N=836). SINV HI antibodies were found for the first time in birds during their spring migration to Northern Europe, from three individuals: red-backed shrike, robin, and song thrush. Of the grouse, 27.4% were seropositive in 2003, one year after a human outbreak, but only 1.4% of the grouse were seropositive in 2004. Thus, grouse might contribute to the human epidemiology of SINV. A total of 86 patients with verified SINV infection were recruited to the study in 2002. SINV RNA detection or virus isolation from blood and/or skin lesions was successful in eight patients. IgM antibodies became detectable within the first eight days of illness, and IgG within 11 days. The acute phase of Pogosta disease was characterized by arthritis, itching rash, fatigue, mild fever, headache, and muscle pain. Half of the patients reported in self-administered questionnaires joint symptoms to last > 12 months. Physical examination in 49 of these patients three years after infection revealed persistent joint manifestations. Arthritis (swelling and tenderness in physical examination) was diagnosed in 4.1% (2/49) of the patients. Tenderness in palpation or in movement of a joint was found in 14.3% of the patients in the rheumatologic examination, and additional 10.2% complained persisting arthralgia at the interview. Thus, 24.5% of the patients had joint manifestations attributable to the infection three years earlier. A positive IgM antibody response persisted in 3/49 of the patients; both two patients with arthritis were in this group. Persistent symptoms of SINV infection might have considerable public health implications in areas with high seroprevalence. The age-standardized seroprevalence of SINV (1999-2003, N=2529) in the human population in Finland was 5.2%. The seroprevalence was high in North Karelia, Kainuu, and Central Ostrobothnia. The incidence was highest in North Karelia. Seroprevalence in men (6.0%) was significantly higher than in women (4.1%), however, the average annualized incidence in the non-epidemic years was higher in women than in men, possibly indicating that infected men are more frequently asymptomatic. The seroprevalence increased with age, reaching 15.4% in persons aged 60-69 years. The incidence was highest in persons aged 50-59 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An unknown virus was isolated from massive mortality of cultured threadfin (Eleutheronema tetradactylus) fingerlings. The virus replicated in BF-2 fish cell line and produced a plaque-like cytopathic effect. Electron micrographs revealed non-enveloped, icosahedral particles approximately 70-80 nm in diameter composed of a double capsid layer. Viroplasms and subviral particles approximately 30 run in diameter and complete particles of 70 nm in diameter were also observed in the infected BF-2 tissue culture cells. The virus was resistant upon pH 3 to 11 and ether treatment. It is also stable to heat treatment (3 h at 56 T). Replication was not inhibited by 5-iododeoxyuridine (5-IUdR). Acridine orange stain revealed typical reovirus-like cytoplasmic inclusion bodies. Electrophoresis of purified virus revealed 11 segments of double-stranded RNA and five major structural polypeptides of approximately 136, 132, 71, 41 and 33 kDa. Based on these findings, the virus isolated was identified to belong to the genus Aquareovirus and was designated as threadfin reovirus. This virus differed from a majority of other aquareovirus by its increase in virus infectivity upon exposure to various treatments such as high and low pH, heat (56 degreesC), ether and 5-IUdR. The RNA and virion protein banding pattern of the threadfin reovirus was shown to differ from another Asian isolate, the grass carp hemorrhage reovirus (GCV). Artificial injection of the threadfin reovirus into threadfin fingerlings resulted in complete mortality, whereas sea bass (Lates calcarifer) fingerlings infected via bath route showed severe mortality within a week after exposure. These results indicate that the threadfin virus is another pathogenic Asian aquareovirus isolate that could cross-infect into another marine fish, the sea bass. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A virus, tentatively identified as reo-like, occurred concurrently with experimentally-induced Baculovirus penaei (BP) infection in cultured white shrimp larvae Penaeus vannamei. Each shrimp with a reo-like viral infection also had a BP infection, but not all BP-infected shrimp had a reo-like infection. Both viruses occurred in the same tissues and occasionally withln the same cell. The reolike virus developed in epithelial cells of the anterior midgut and in reserve- and fibrillar-cells of the hepatopancreas. The paraspherical and non-enveloped reo-like virions (ca. 50 nm diam.) occurred as unordered aggregates in the cell cytoplasm. Their etiology has not been determined. Reo-like virions may have been introduced along with the BP virus, or, were latent and only manifested due to stress induced by the more pathogenic BP virus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vaccinia virus (VV) produces two antigenically and structurally distinct infectious virions, intracellular mature virus (IMV) and extracellular enveloped virus (EEV). Here we have investigated the resistance of EEV and IMV to neutralization by complement in the absence of immune antibodies. When EEV is challenged with complement from the same species as the cells used to grow the virus, EEV is resistant to neutralization by complement, whereas IMV is not. EEV resistance was not a result of EEV protein B5R, despite its similarity to proteins of the regulators of complement activation (RCA) family, or to any of the other EEV proteins tested (A34R, A36R, and A56R gene products). EEV was sensitive to complement when the virus was grown in one species and challenged with complement from a different species, suggesting that complement resistance might be mediated by host RCA incorporated into the EEV outer envelope. This hypothesis was confirmed by several observations: (i) immunoblot analysis revealed that cellular membrane proteins CD46, CD55, CD59, CD71, CD81, and major histocompatibility complex class I antigen were detected in purified EEV but not IMV; (ii) immunoelectron microscopy revealed cellular RCA on the surface of EEV retained on the cell surface; and (iii) EEV derived from rat cells expressing the human RCA CD55 or CD55 and CD59 were more resistant to human complement than EEV derived from control rat cells that expressed neither CD55 nor CD59. These data justify further analysis of the roles of these (and possible other) cellular proteins in EEV biology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several approaches have been explored to eradicate HIV; however, a multigene vaccine appears to be the best option, given their proven potential to elicit broad, effective responses in animal models. The Pr55 Gagprotein is an excellent vaccine candidate in its own right, given that it can assemble into large, enveloped, virus-like particles (VLPs) which are highly immunogenic, and can moreover be used as a scaffold for the presentation of other large non-structural HIV antigens. In this study, we evaluated the potential of two novel chimaeric HIV-1 Pr55 Gag-based VLP constructs - C-terminal fusions with reverse transcriptase and a Tat::Nef fusion protein, designated GagRT and GagTN respectively - to enhance a cellular response in mice when used as boost components in two types of heterologous prime-boost vaccine strategies. A vaccine regimen consisting of a DNA prime and chimaeric HIV-1 VLP boosts in mice induced strong, broad cellular immune responses at an optimum dose of 100 ng VLPs. The enhanced cellular responses induced by the DNA prime-VLP boost were two- to three-fold greater than two DNA vaccinations. Moreover, a mixture of GagRT and GagTN VLPs also boosted antigen-specific CD8+ and CD4+ T-cell responses, while VLP vaccinations only induced predominantly robust Gag CD4+ T-cell responses. The results demonstrate the promising potential of these chimaeric VLPs as vaccine candidates against HIV-1. © 2010 Pillay et al; licensee BioMed Central Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ebola virus is a highly pathogenic filovirus causing severe hemorrhagic fever with high mortality rates. It assembles heterogenous, filamentous, enveloped virus particles containing a negative-sense, single-stranded RNA genome packaged within a helical nucleocapsid (NC). We have used cryo-electron microscopy and tomography to visualize Ebola virus particles, as well as Ebola virus-like particles, in three dimensions in a near-native state. The NC within the virion forms a left-handed helix with an inner nucleoprotein layer decorated with protruding arms composed of VP24 and VP35. A comparison with the closely related Marburg virus shows that the N-terminal region of nucleoprotein defines the inner diameter of the Ebola virus NC, whereas the RNA genome defines its length. Binding of the nucleoprotein to RNA can assemble a loosely coiled NC-like structure; the loose coil can be condensed by binding of the viral matrix protein VP40 to the C terminus of the nucleoprotein, and rigidified by binding of VP24 and VP35 to alternate copies of the nucleoprotein. Four proteins (NP, VP24, VP35, and VP40) are necessary and sufficient to mediate assembly of an NC with structure, symmetry, variability, and flexibility indistinguishable from that in Ebola virus particles released from infected cells. Together these data provide a structural and architectural description of Ebola virus and define the roles of viral proteins in its structure and assembly

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Vaccinia virus, the prototype member of the orthopoxviruses, is the largest and the most complex virus known. After replication of its genome and expression of the viral proteins, vaccinia undergoes a complicated assembly process which produces two distinct infectious forms. The first of these, the intracellular mature virus (IMV), develops from the immature virion (IV) after packaging of the genome and cleavage of the core proteins. During the transition of the IV to the IMV, a new core structure develops in the centre of the virion, concomitantly with the appearance of spike-like structures which extend between this core and the surrounding membranes of the IMV. I describe the characterization of p39 (gene A4L) which is hypothesized to be one component of these spikes. p39 is a core protein, but has strong associations with the membranes surrounding the IMV, possibly due to an interaction with p21 (A17L). Due to its location between the core and the membranes of the IMV, p39 is ideally situated to act as a matrix-like linker protein and may play a role in the formation of the core during the transition of the IV to the IMV. The IMV is subsequently wrapped by a membrane cisterna derived from the trans Golgi network, to form the intracellular enveloped virus (IEV). I show that the IEV can co-opt the actin cytoskeleton of the host cell in order to induce the formation of actin tails which extend from one side of the virion. These actin tails propel the virus particle, both intra- and intercellularly, at speeds of up to 2.8µm/min. On reaching the plasma membrane, the virus particles project out from the cell surface at the tip of virally induced microvilli. The outer membrane of the IEV is thought to fuse with the plasma membrane at the tip of these projections, thus exposing the second infectious form of vaccinia. This is thought to be the means by which the cell-associated enveloped virus is presented to neighbouring cells, thereby facilitating the direct cell-to-cell spread of virus particles.