775 resultados para Non-certificate-based public key management system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current research in secure messaging for Vehicular Ad hoc Networks (VANETs) appears to focus on employing a digital certificate-based Public Key Cryptosystem (PKC) to support security. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This paper proposes a non-certificate-based public key management for VANETs. A comprehensive evaluation of performance and scalability of the proposed public key management regime is presented, which is compared to a certificate-based PKC by employing a number of quantified analyses and simulations. Not only does this paper demonstrate that the proposal can maintain security, but it also asserts that it can improve overall performance and scalability at a lower cost, compared to the certificate-based PKC. It is believed that the proposed scheme will add a new dimension to the key management and verification services for VANETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The major purpose of Vehicular Ad Hoc Networks (VANETs) is to provide safety-related message access for motorists to react or make a life-critical decision for road safety enhancement. Accessing safety-related information through the use of VANET communications, therefore, must be protected, as motorists may make critical decisions in response to emergency situations in VANETs. If introducing security services into VANETs causes considerable transmission latency or processing delays, this would defeat the purpose of using VANETs to improve road safety. Current research in secure messaging for VANETs appears to focus on employing certificate-based Public Key Cryptosystem (PKC) to support security. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This paper proposes an efficient public key management system for VANETs: the Public Key Registry (PKR) system. Not only does this paper demonstrate that the proposed PKR system can maintain security, but it also asserts that it can improve overall performance and scalability at a lower cost, compared to the certificate-based PKC scheme. It is believed that the proposed PKR system will create a new dimension to the key management and verification services for VANETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary goal of the Vehicular Ad Hoc Network (VANET) is to provide real-time safety-related messages to motorists to enhance road safety. Accessing and disseminating safety-related information through the use of wireless communications technology in VANETs should be secured, as motorists may make critical decisions in dealing with an emergency situation based on the received information. If security concerns are not addressed in developing VANET systems, an adversary can tamper with, or suppress, the unprotected message to mislead motorists to cause traffic accidents and hazards. Current research on secure messaging in VANETs focuses on employing the certificate-based Public Key Infrastructure (PKI) scheme to support message encryption and digital signing. The security overhead of such a scheme, however, creates a transmission delay and introduces a time-consuming verification process to VANET communications. This thesis has proposed a novel public key verification and management approach for VANETs; namely, the Public Key Registry (PKR) regime. Compared to the VANET PKI scheme, this new approach can satisfy necessary security requirements with improved performance and scalability, and at a lower cost by reducing the security overheads of message transmission and eliminating digital certificate deployment and maintenance issues. The proposed PKR regime consists of the required infrastructure components, rules for public key management and verification, and a set of interactions and associated behaviours to meet these rule requirements. This is achieved through a system design as a logic process model with functional specifications. The PKR regime can be used as development guidelines for conforming implementations. An analysis and evaluation of the proposed PKR regime includes security features assessment, analysis of the security overhead of message transmission, transmission latency, processing latency, and scalability of the proposed PKR regime. Compared to certificate-based PKI approaches, the proposed PKR regime can maintain the necessary security requirements, significantly reduce the security overhead by approximately 70%, and improve the performance by 98%. Meanwhile, the result of the scalability evaluation shows that the latency of employing the proposed PKR regime stays much lower at approximately 15 milliseconds, whether operating in a huge or small environment. It is therefore believed that this research will create a new dimension to the provision of secure messaging services in VANETs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To protect the health information security, cryptography plays an important role to establish confidentiality, authentication, integrity and non-repudiation. Keys used for encryption/decryption and digital signing must be managed in a safe, secure, effective and efficient fashion. The certificate-based Public Key Infrastructure (PKI) scheme may seem to be a common way to support information security; however, so far, there is still a lack of successful large-scale certificate-based PKI deployment in the world. In addressing the limitations of the certificate-based PKI scheme, this paper proposes a non-certificate-based key management scheme for a national e-health implementation. The proposed scheme eliminates certificate management and complex certificate validation procedures while still maintaining security. It is also believed that this study will create a new dimension to the provision of security for the protection of health information in a national e-health environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of countries are faced with an aging population increasingly needing healthcare services. For any e-health information system, the need for increased trust by such clients with potentially little knowledge of any security scheme involved is paramount. In addition notable scalability of any system has become a critical aspect of system design, development and ongoing management. Meanwhile cryptographic systems provide the security provisions needed for confidentiality, authentication, integrity and non-repudiation. Cryptographic key management, however, must be secure, yet efficient and effective in developing an attitude of trust in system users. Digital certificate-based Public Key Infrastructure has long been the technology of choice or availability for information security/assurance; however, there appears to be a notable lack of successful implementations and deployments globally. Moreover, recent issues with associated Certificate Authority security have damaged trust in these schemes. This paper proposes the adoption of a centralised public key registry structure, a non-certificate based scheme, for large scale e-health information systems. The proposed structure removes complex certificate management, revocation and a complex certificate validation structure while maintaining overall system security. Moreover, the registry concept may be easier for both healthcare professionals and patients to understand and trust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have proposed a novel certificate-less on-demand public key management (CLPKM) protocol for self-organized MANETs. The protocol works on flat network architecture, and distinguishes between authentication layer and routing layer of the network. We put an upper limit on the length of verification route and use the end-to-end trust value of a route to evaluate its strength. The end-to-end trust value is used by the protocol to select the most trusted verification route for accomplishing public key verification. Also, the protocol uses MAC function instead of RSA certificates to perform public key verification. By doing this, the protocol saves considerable computation power, bandwidth and storage space. The saved storage space is utilized by the protocol to keep a number of pre-established routes in the network nodes, which helps in reducing the average verification delay of the protocol. Analysis and simulation results confirm the effectiveness of the proposed protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the self-organized public key management approaches, public key verification is achieved through verification routes constituted by the transitive trust relationships among the network principals. Most of the existing approaches do not distinguish among different available verification routes. Moreover, to ensure stronger security, it is important to choose an appropriate metric to evaluate the strength of a route. Besides, all of the existing self-organized approaches use certificate-chains for achieving authentication, which are highly resource consuming. In this paper, we present a self-organized certificate-less on-demand public key management (CLPKM) protocol, which aims at providing the strongest verification routes for authentication purposes. It restricts the compromise probability for a verification route by restricting its length. Besides, we evaluate the strength of a verification route using its end-to-end trust value. The other important aspect of the protocol is that it uses a MAC function instead of RSA certificates to perform public key verifications. By doing this, the protocol saves considerable computation power, bandwidth and storage space. We have used an extended strand space model to analyze the correctness of the protocol. The analytical, simulation, and the testbed implementation results confirm the effectiveness of the proposed protocol. (c) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is anticipated that constrained devices in the Internet of Things (IoT) will often operate in groups to achieve collective monitoring or management tasks. For sensitive and mission-critical sensing tasks, securing multicast applications is therefore highly desirable. To secure group communications, several group key management protocols have been introduced. However, the majority of the proposed solutions are not adapted to the IoT and its strong processing, storage, and energy constraints. In this context, we introduce a novel decentralized and batch-based group key management protocol to secure multicast communications. Our protocol is simple and it reduces the rekeying overhead triggered by membership changes in dynamic and mobile groups and guarantees both backward and forward secrecy. To assess our protocol, we conduct a detailed analysis with respect to its communcation and storage costs. This analysis is validated through simulation to highlight energy gains. The obtained results show that our protocol outperforms its peers with respect to keying overhead and the mobility of members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Along with the growing demand for cryptosystems in systems ranging from large servers to mobile devices, suitable cryptogrophic protocols for use under certain constraints are becoming more and more important. Constraints such as calculation time, area, efficiency and security, must be considered by the designer. Elliptic curves, since their introduction to public key cryptography in 1985 have challenged established public key and signature generation schemes such as RSA, offering more security per bit. Amongst Elliptic curve based systems, pairing based cryptographies are thoroughly researched and can be used in many public key protocols such as identity based schemes. For hardware implementions of pairing based protocols, all components which calculate operations over Elliptic curves can be considered. Designers of the pairing algorithms must choose calculation blocks and arrange the basic operations carefully so that the implementation can meet the constraints of time and hardware resource area. This thesis deals with different hardware architectures to accelerate the pairing based cryptosystems in the field of characteristic two. Using different top-level architectures the hardware efficiency of operations that run at different times is first considered in this thesis. Security is another important aspect of pairing based cryptography to be considered in practically Side Channel Analysis (SCA) attacks. The naively implemented hardware accelerators for pairing based cryptographies can be vulnerable when taking the physical analysis attacks into consideration. This thesis considered the weaknesses in pairing based public key cryptography and addresses the particular calculations in the systems that are insecure. In this case, countermeasures should be applied to protect the weak link of the implementation to improve and perfect the pairing based algorithms. Some important rules that the designers must obey to improve the security of the cryptosystems are proposed. According to these rules, three countermeasures that protect the pairing based cryptosystems against SCA attacks are applied. The implementations of the countermeasures are presented and their performances are investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a report about the FuXML project carried out at the FernUniversität Hagen. FuXML is a Learning Content Management System (LCMS) aimed at providing a practical and efficient solution for the issues attributed to authoring, maintenance, production and distribution of online and offline distance learning material. The paper presents the environment for which the system was conceived and describes the technical realisation. We discuss the reasons for specific implementation decisions and also address the integration of the system within the organisational and technical infrastructure of the university.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roiling financial markets, constantly changing tax law and increasing complexity of planning transaction increase the demand of aggregated family wealth management (FWM) services. However, current trend of developing such advisory systems is mainly focusing on financial or investment side. In addition, these existing systems lack of flexibility and are hard to be integrated with other organizational information systems, such as CRM systems. In this paper, a novel architecture of Web-service-agents-based FWM systems has been proposed. Multiple intelligent agents are wrapped as Web services and can communicate with each other via Web service protocols. On the one hand, these agents can collaborate with each other and provide comprehensive FWM advices. On the other hand, each service can work independently to achieve its own tasks. A prototype system for supporting financial advice is also presented to demonstrate the advances of the proposed Webservice- agents-based FWM system architecture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pervasive computing applications must be sufficiently autonomous to adapt their behaviour to changes in computing resources and user requirements. This capability is known as context-awareness. In some cases, context-aware applications must be implemented as autonomic systems which are capable of dynamically discovering and replacing context sources (sensors) at run-time. Unlike other types of application autonomy, this kind of dynamic reconfiguration has not been sufficiently investigated yet by the research community. However, application-level context models are becoming common, in order to ease programming of context-aware applications and support evolution by decoupling applications from context sources. We can leverage these context models to develop general (i.e., application-independent) solutions for dynamic, run-time discovery of context sources (i.e., context management). This paper presents a model and architecture for a reconfigurable context management system that supports interoperability by building on emerging standards for sensor description and classification.