989 resultados para Noise-plus-interference matrix inversion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A particular property of the matched desiredimpulse response receiver is introduced in this paper, namely,the fact that full exploitation of the diversity is obtained withmultiple beamformers when the channel is spatially and timelydispersive. This particularity makes the receiver specially suitablefor mobile and underwater communications. The new structureprovides better performance than conventional and weightedVRAKE receivers, and a diversity gain with no needs of additionalradio frequency equipment. The baseband hardware neededfor this new receiver may be obtained through reconfigurabilityof the RAKE architectures available at the base station. Theproposed receiver is tested through simulations assuming UTRAfrequency-division-duplexing mode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A basic approach to study a NVH problem is to break down the system in three basic elements – source, path and receiver. While the receiver (response) and the transfer path can be measured, it is difficult to measure the source (forces) acting on the system. It becomes necessary to predict these forces to know how they influence the responses. This requires inverting the transfer path. Singular Value Decomposition (SVD) method is used to decompose the transfer path matrix into its principle components which is required for the inversion. The usual approach to force prediction requires rejecting the small singular values obtained during SVD by setting a threshold, as these small values dominate the inverse matrix. This assumption of the threshold may be subjected to rejecting important singular values severely affecting force prediction. The new approach discussed in this report looks at the column space of the transfer path matrix which is the basis for the predicted response. The response participation is an indication of how the small singular values influence the force participation. The ability to accurately reconstruct the response vector is important to establish a confidence in force vector prediction. The goal of this report is to suggest a solution that is mathematically feasible, physically meaningful, and numerically more efficient through examples. This understanding adds new insight to the effects of current code and how to apply algorithms and understanding to new codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a spatial filtering technique forthe reception of pilot-aided multirate multicode direct-sequencecode division multiple access (DS/CDMA) systems such as widebandCDMA (WCDMA). These systems introduce a code-multiplexedpilot sequence that can be used for the estimation of thefilter weights, but the presence of the traffic signal (transmittedat the same time as the pilot sequence) corrupts that estimationand degrades the performance of the filter significantly. This iscaused by the fact that although the traffic and pilot signals areusually designed to be orthogonal, the frequency selectivity of thechannel degrades this orthogonality at hte receiving end. Here,we propose a semi-blind technique that eliminates the self-noisecaused by the code-multiplexing of the pilot. We derive analyticallythe asymptotic performance of both the training-only andthe semi-blind techniques and compare them with the actual simulatedperformance. It is shown, both analytically and via simulation,that high gains can be achieved with respect to training-onlybasedtechniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research on the micro-structural characterization of metal-matrix composites uses X-ray computed tomography to collect information about the interior features of the samples, in order to elucidate their exhibited properties. The tomographic raw data needs several steps of computational processing in order to eliminate noise and interference. Our experience with a program (Tritom) that handles these questions has shown that in some cases the processing steps take a very long time and that it is not easy for a Materials Science specialist to interact with Tritom in order to define the most adequate parameter values and the proper sequence of the available processing steps. For easing the use of Tritom, a system was built which addresses the aspects described before and that is based on the OpenDX visualization system. OpenDX visualization facilities constitute a great benefit to Tritom. The visual programming environment of OpenDX allows an easy definition of a sequence of processing steps thus fulfilling the requirement of an easy use by non-specialists on Computer Science. Also the possibility of incorporating external modules in a visual OpenDX program allows the researchers to tackle the aspect of reducing the long execution time of some processing steps. The longer processing steps of Tritom have been parallelized in two different types of hardware architectures (message-passing and shared-memory); the corresponding parallel programs can be easily incorporated in a sequence of processing steps defined in an OpenDX program. The benefits of our system are illustrated through an example where the tool is applied in the study of the sensitivity to crushing – and the implications thereof – of the reinforcements used in a functionally graded syntactic metallic foam.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most biological systems are formed by component parts that are to some degree interrelated. Groups of parts that are more associated among themselves and are relatively autonomous from others are called modules. One of the consequences of modularity is that biological systems usually present an unequal distribution of the genetic variation among traits. Estimating the covariance matrix that describes these systems is a difficult problem due to a number of factors such as poor sample sizes and measurement errors. We show that this problem will be exacerbated whenever matrix inversion is required, as in directional selection reconstruction analysis. We explore the consequences of varying degrees of modularity and signal-to-noise ratio on selection reconstruction. We then present and test the efficiency of available methods for controlling noise in matrix estimates. In our simulations, controlling matrices for noise vastly improves the reconstruction of selection gradients. We also perform an analysis of selection gradients reconstruction over a New World Monkeys skull database to illustrate the impact of noise on such analyses. Noise-controlled estimates render far more plausible interpretations that are in full agreement with previous results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of synthetic aperture radar interferometric phase noise reduction is addressed. A new technique based on discrete wavelet transforms is presented. This technique guarantees high resolution phase estimation without using phase image segmentation. Areas containing only noise are hardly processed. Tests with synthetic and real interferograms are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce a new algorithm, based on the successful work of Fathi and Alexandrov, on hybrid Monte Carlo algorithms for matrix inversion and solving systems of linear algebraic equations. This algorithm consists of two parts, approximate inversion by Monte Carlo and iterative refinement using a deterministic method. Here we present a parallel hybrid Monte Carlo algorithm, which uses Monte Carlo to generate an approximate inverse and that improves the accuracy of the inverse with an iterative refinement. The new algorithm is applied efficiently to sparse non-singular matrices. When we are solving a system of linear algebraic equations, Bx = b, the inverse matrix is used to compute the solution vector x = B(-1)b. We present results that show the efficiency of the parallel hybrid Monte Carlo algorithm in the case of sparse matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider bilinear forms of matrix polynomials and show that these polynomials can be used to construct solutions for the problems of solving systems of linear algebraic equations, matrix inversion and finding extremal eigenvalues. An almost Optimal Monte Carlo (MAO) algorithm for computing bilinear forms of matrix polynomials is presented. Results for the computational costs of a balanced algorithm for computing the bilinear form of a matrix power is presented, i.e., an algorithm for which probability and systematic errors are of the same order, and this is compared with the computational cost for a corresponding deterministic method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inversion of seismo-volcanic events is performed to retrieve the source geometry and to determine volumetric budgets of the source. Such observations have shown to be an important tool for the seismological monitoring of volcanoes. We developed a novel technique for the non-linear constrained inversion of low frequency seismo-volcanic events. Unconstrained linear inversion methods work well when a dense network of broadband seismometers is available. We propose a new constrained inversion technique, which has shown to be efficient also in a reduced network configuration and a low signal-noise ratio. The waveform inversion is performed in the frequency domain, constraining the source mechanism during the event to vary only in its magnitude. The eigenvectors orientation and the eigenvalue ratio are kept constant. This significantly reduces the number of parameters to invert, making the procedure more stable. The method has been tested over a synthetic dataset, reproducing realistic very-long-period (VLP) signals of Stromboli volcano. The information obtained by performing the synthetic tests is used to assess the reliability of the results obtained on a VLP dataset recorded on Stromboli volcano and on a low frequency events recorded at Vesuvius volcano.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost.