903 resultados para Nobel Prize


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carlos Chagas, a Brazilian physician, discovered the American trypanosomiasis in 1909. Like other remarkable discoveries of those days, his work helped to articulate the insect-vector theory and other theoretical guidelines in tropical medicine. Unlike all other discoveries, all the stages of this work were accomplished in a few months and by a single man. Chagas' discovery was widely recognized at home and abroad. He was twice nominated for the Nobel Prize - in 1913 and in 1921-, but never received the award. Evidence suggests that the reasons for this failure are related to the violent opposition that Chagas faced in Brazil. The contentions towards Chagas were related to a rejection of the meritocratic procedures that gave him prominence, as well as to local petty politics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Nobel Prize was created by Alfred Nobel. The first prize was awarded in 1901 and Emil Adolf von Behring was the first laureate in medicine due to his research in diphtheria serum. Regarding cardiology, Nobel Prize’s history permits a global comprehension of progress in pathophysiology, diagnosis and therapeutics of various cardiac diseases in last 120 years. The objective of this study was to review the major scientific discoveries contemplated by Nobel Prizes that contributed to cardiology. In addition, we also hypothesized why Carlos Chagas, one of our most important scientists, did not win the prize in two occasions. We carried out a non-systematic review of Nobel Prize winners, selecting the main studies relevant to heart diseaseamong the laureates. In the period between 1901 and 2013, 204 researches and 104 prizes were awarded in Nobel Prize, of which 16 (15%) studies were important for cardiovascular area. There were 33 (16%) laureates, and two (6%) were women. Fourteen (42%) were American, 15 (45%) Europeans and four (13%) were from other countries. There was only one winner born in Brazil, Peter Medawar, whose career was all in England. Reviewing the history of the Nobel Prize in physiology or medicine area made possible to identify which researchers and studies had contributed to advances in the diagnosis, prevention and treatment of cardiovascular diseases. Most winners were North Americans and Europeans, and male.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Capítol 8 sobre la candidatura de Josep Carner al premi Nobel de Literatura, a partir de 1962.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A résumé of the evolution of quantum chemistry methodologies is presented. The pioneering contributions of John A. Pople and Water Kohn, the 1998 Nobel Prize Laureates in Chemistry, to the development of quantum chemistry computational methods for studying the properties of molecules and their interaction is discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The 2008 Nobel prize of physics pay tribute to three theoretical physicist by their work related to some symmetries of Nature. We briefly comments the importance of these works and the context in which they were done.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Three texts were prepared for delivery at the first honorary doctorate awarded simultaneously by three Lisbon universities on 27 February, 2012: an introduction, a lecture and a comment. The event included the award of member of the Lisbon Academy of Science (ACL) by Manuel Jacinto Nunes, dean of the economics and finance section of ACL who proposed his name and Olivier Blanchard’s on the 30th anniversary of James Tobin receiving an honorary doctorate from Nova University. On 24 February , Paul Krugman visited ACL and participated in a session of the project dubbed “Letter to the lusofonia Queen”. Since this project is promoted by Nova SBE’s Center for Globalization and Governance and has been featured in some of the graduate courses, a short note on the meeting is included in annex. On 15 June, the three universities authorized an edition in Portuguese and donated the copyrights to a student award on “Krugman economics”, in a way still to be determined by the editor. The lecture and the comment will be translated as soon as a suitable publisher is found. Since a lot of the teaching at Nova SBE is in English, it seemed appropriate to reproduce the original texts in the order in which they were presented. A lively question and answer period was also recorded by Nova TV and should be made available in the book, together with highlights of the media coverage. Introduced as a “militant economist”, he speaks about a crisis “his mind loves but does not let the heart forget the poor and the unemployed”. The Nobel prize winner described as a“progressist pessimist of the world economy” concludes with a severe indictment of the profession. “In normal times, when things are going pretty well, the world can function reasonably well without professional economic advice. It’s in times of crisis, when practical experience suddenly proves useless and events are beyond anyone’s normal experience, that we need professors with their models to light the path forward. And when the moment came, we failed”. The comment, by the official responsible for Paul Krugman’s mission to Portugal in 1976, contains an equally dire prediction: “I would very much like to see in the near future the weakening of the influence not only of freshwater economists but also of their conservative European followers. But I fear that this will not happen until we find ourselves in a more calamitous situation than at present”. Fortunately Silva Lopes closes in the hope “that the ideas of Paul Krugman will soon have more influence in policy makers than at present seems to be the case”.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

RESUME La méthode de la spectroscopie Raman est une technique d'analyse chimique basée sur l'exploitation du phénomène de diffusion de la lumière (light scattering). Ce phénomène fut observé pour la première fois en 1928 par Raman et Krishnan. Ces observations permirent à Raman d'obtenir le Prix Nobel en physique en 1930. L'application de la spectroscopie Raman a été entreprise pour l'analyse du colorant de fibres textiles en acrylique, en coton et en laine de couleurs bleue, rouge et noire. Nous avons ainsi pu confirmer que la technique est adaptée pour l'analyse in situ de traces de taille microscopique. De plus, elle peut être qualifiée de rapide, non destructive et ne nécessite aucune préparation particulière des échantillons. Cependant, le phénomène de la fluorescence s'est révélé être l'inconvénient le plus important. Lors de l'analyse des fibres, différentes conditions analytiques ont été testées et il est apparu qu'elles dépendaient surtout du laser choisi. Son potentiel pour la détection et l'identification des colorants imprégnés dans les fibres a été confirmé dans cette étude. Une banque de données spectrale comprenant soixante colorants de référence a été réalisée dans le but d'identifier le colorant principal imprégné dans les fibres collectées. De plus, l'analyse de différents blocs de couleur, caractérisés par des échantillons d'origine inconnue demandés à diverses personnes, a permis de diviser ces derniers en plusieurs groupes et d'évaluer la rareté des configurations des spectres Raman obtenus. La capacité de la technique Raman à différencier ces échantillons a été évaluée et comparée à celle des méthodes conventionnelles pour l'analyse des fibres textiles, à savoir la micro spectrophotométrie UV-Vis (MSP) et la chromatographie sur couche mince (CCM). La technique Raman s'est révélée être moins discriminatoire que la MSP pour tous les blocs de couleurs considérés. C'est pourquoi dans le cadre d'une séquence analytique nous recommandons l'utilisation du Raman après celle de la méthode d'analyse de la couleur, à partir d'un nombre de sources lasers le plus élevé possible. Finalement, la possibilité de disposer d'instruments équipés avec plusieurs longueurs d'onde d'excitation, outre leur pouvoir de réduire la fluorescence, permet l'exploitation d'un plus grand nombre d'échantillons. ABSTRACT Raman spectroscopy allows for the measurement of the inelastic scattering of light due to the vibrational modes of a molecule when irradiated by an intense monochromatic source such as a laser. Such a phenomenon was observed for the first time by Raman and Krishnan in 1928. For this observation, Raman was awarded with the Nobel Prize in Physics in 1930. The application of Raman spectroscopy has been undertaken for the dye analysis of textile fibers. Blue, black and red acrylics, cottons and wools were examined. The Raman technique presents advantages such as non-destructive nature, fast analysis time, and the possibility of performing microscopic in situ analyses. However, the problem of fluorescence was often encountered. Several aspects were investigated according to the best analytical conditions for every type/color fiber combination. The potential of the technique for the detection and identification of dyes was confirmed. A spectral database of 60 reference dyes was built to detect the main dyes used for the coloration of fiber samples. Particular attention was placed on the discriminating power of the technique. Based on the results from the Raman analysis for the different blocs of color submitted to analyses, it was possible to obtain different classes of fibers according to the general shape of spectra. The ability of Raman spectroscopy to differentiate samples was compared to the one of the conventional techniques used for the analysis of textile fibers, like UV-Vis Microspectrophotometry (UV-Vis MSP) and thin layer chromatography (TLC). The Raman technique resulted to be less discriminative than MSP for every bloc of color considered in this study. Thus, it is recommended to use Raman spectroscopy after MSP and light microscopy to be considered for an analytical sequence. It was shown that using several laser wavelengths allowed for the reduction of fluorescence and for the exploitation of a higher number of samples.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT: The 26th annual meeting of the Society for Immunotherapy of Cancer took place in Bethesda on November 4 to 6, 2011 and was organized by Charles G. Drake (Johns Hopkins University) Dolores J. Schendel (Helmholtz Zentrum Muenchen - German Research Center for Environmental Health Institute of Molecular Immunology), Jeffrey Schlom (National Cancer Institute, National Institutes of Health), and Jedd D. Wolchok (Memorial Sloan-Kettering Cancer Center). It was an event marked by a number of extraordinary circumstances: it attracted a record attendance of 805 participants from 24 different countries. The gathering came in the wake of great as well as very sad news for the tumor immunology community. Good news included the approval of anti-CTLA-4 as a therapy for metastatic melanoma in April and the announcement in early October of the Nobel Prize in Physiology and Medicine awarded to pioneering studies in the field of immunology. Indeed, one part of the prize went to Dr. Bruce Beutler, Scripps Research Institute, La Jolla, USA and Dr. Jules Hoffman, Institute for Molecular Cell Biology, Strasbourg, France, for their discoveries in innate immunity and the other part to Dr. Ralph Steinman, The Rockfeller University, New York, for his discovery of dendritic cells. Sad news was the losses of two giants in the field. Jürg Tschopp of the University of Lausanne in March and Ralph Steinman, who passed away just three days before his Nobel Prize announcement. The loss of these two charismatic scientific leaders was particularly sad for the Annual Meeting as both J. Tschopp and R. Steinman were confirmed speakers at this meeting: the former to deliver the keynote lecture and the latter as recipient of the Richard V. Smalley prize.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Irving Langmuir received the Nobel Prize in Chemistry in 1932 "...for his outstanding discoveries and investigations within the field of surface chemistry", according to the Swedish Academy. However, few people know that his work comprises other very important contributions, and not only for chemistry, such as the discovery of plasma, the atomic hydrogen, the pure thermoionic phenomenon, the development of the cloud seeding technique for weather modification, among many others. This paper summarizes Langmuir's most important discoveries and theories, with an especial mention for his practical inventions and his work on the atomic theory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Croatian chemist Vladimir Prelog shared in 1975 the Nobel Prize in chemistry with J. W. Cornforth for his research into the stereochemistry of organic molecules and reactions. His studies gave new horizons to the comprehension of steric effects on the reactivity of medium-sized rings, to conformational analysis and to the stereospecificity associated to asymmetric syntheses. Prelog made important contributions to enzyme chemistry and to the structure elucidation of alkaloids and of antibiotics from microorganisms, but probably his most famous work is the CIP system for assigning the stereochemistry of chiral centers.