749 resultados para NoSQL, Social Business Intelligence, MongoDB
Resumo:
Il primo capitolo prevede un’introduzione sul modello relazionale e sulle difficoltà che possono nascere nel tentativo di conformare le esigenze attuali di applicazioni ed utenti ai vincoli da esso imposti per lasciare poi spazio ad un’ampia descrizione del movimento NoSQL e delle tecnologie che ne fanno parte; il secondo capitolo sarà invece dedicato a MongoDB, alla presentazione delle sue caratteristiche e peculiarità, cercando di fornirne un quadro apprezzabile ed approfondito seppure non completo e del tutto esaustivo; infine nel terzo ed ultimo capitolo verrà approfondito il tema della ricerca di testo in MongoDB e verranno presentati e discussi i risultati ottenuti dai nostri test.
Resumo:
L’ultimo decennio ha visto un radicale cambiamento del mercato informatico, con la nascita di un numero sempre maggiore di applicazioni rivolte all’interazione tra utenti. In particolar modo, l’avvento dei social network ha incrementato notevolmente le possibilità di creare e condividere contenuti sul web, generando volumi di dati sempre maggiori, nell’ordine di petabyte e superiori. La gestione di tali quantità di dati ha portato alla nascita di soluzioni non relazionali appositamente progettate, dette NoSQL. Lo scopo di questo documento è quello di illustrare come i sistemi NoSQL, nello specifico caso di MongoDB, cerchino di sopperire alle difficoltà d’utilizzo dei database relazionali in un contesto largamente distribuito. Effettuata l'analisi delle principali funzionalità messe a disposizione da MongoDB, si illustreranno le caratteristiche di un prototipo di applicazione appositamente progettato che sfrutti una capacità peculiare di MongoDB quale la ricerca full-text. In ultima analisi si fornirà uno studio delle prestazioni di tale soluzione in un ambiente basato su cluster, evidenziandone il guadagno prestazionale.
Resumo:
Il presente elaborato ha come oggetto la progettazione e lo sviluppo di una soluzione Elasticsearch come piattaforma di analisi in un contesto di Social Business Intelligence. L’elaborato si inserisce all’interno di un progetto del Business Intelligence Group dell’Università di Bologna, incentrato sul monitoraggio delle discussioni online sul tema politico nel periodo delle elezioni europee del 2014.
Resumo:
Realizzazione di un sistema di Social Business Intelligence basato sul motore SPSS.
Resumo:
Il presente elaborato ha come oggetto l’analisi delle prestazioni e il porting di un sistema di SBI sulla distribuzione Hadoop di Cloudera. Nello specifico è stato fatto un porting dei dati del progetto WebPolEU. Successivamente si sono confrontate le prestazioni del query engine Impala con quelle di ElasticSearch che, diversamente da Oracle, sfrutta la stessa componente hardware (cluster).
Resumo:
Corporate executives require relevant and intelligent business information in real-time to take strategic decisions. They require the freedom to access this information anywhere and anytime. There is a need to extend this functionality beyond the office and on the fingertips of the decision makers. Mobile Business Intelligence Tool (MBIT) aims to provide these features in a flexible and cost-efficient manner. This paper describes the detailed architecture of MBIT to overcome the limitations of existing mobile business intelligence tools. Further, a detailed implementation framework is presented to realize the design. This research highlights the benefits of using service oriented architecture to design flexible and platform independent mobile business applications. © 2009 IEEE.
Resumo:
We consider a multi-market framework where a set of firms compete on two oligopolistic markets. The cost of production of each firm allows for spillovers across markets, ensuring that output decisions for both markets have to be made jointly. Prior to competing in these markets, firms can establish links gathering business intelligence about other firms. A link formed by a firm generates two types of externalities for competitors and consumers. We characterize the business intelligence equilibrium networks and networks that maximize social welfare. By contrast with single market competition, we show that in multi-market competition there exist situations where intelligence gathering activities are underdeveloped with regard to social welfare and should be tolerated, if not encouraged, by public authorities.
Resumo:
Web 2.0 software in general and wikis in particular have been receiving growing attention as they constitute new and powerful tools, capable of supporting information sharing, creation of knowledge and a wide range of collaborative processes and learning activities. This paper introduces briefly some of the new opportunities made possible by Web 2.0 or the social Internet, focusing on those offered by the use of wikis as learning spaces. A wiki allows documents to be created, edited and shared on a group basis; it has a very easy and efficient markup language, using a simple Web browser. One of the most important characteristics of wiki technology is the ease with which pages are created and edited. The facility for wiki content to be edited by its users means that its pages and structure form a dynamic entity, in permanent evolution, where users can insert new ideas, supplement previously existing information and correct errors and typos in a document at any time, up to the agreed final version. This paper explores wikis as a collaborative learning and knowledge-building space and its potential for supporting Virtual Communities of Practice (VCoPs). In the academic years (2007/8 and 2008/9), students of the Business Intelligence module at the Master's programme of studies on Knowledge Management and Business Intelligence at Instituto Superior de Estatistica e Gestao de Informacao of the Universidade Nova de Lisboa, Portugal, have been actively involved in the creation of BIWiki - a wiki for Business Intelligence in the Portuguese language. Based on usage patterns and feedback from students participating in this experience, some conclusions are drawn regarding the potential of this technology to support the emergence of VCoPs; some provisional suggestions will be made regarding the use of wikis to support information sharing, knowledge creation and transfer and collaborative learning in Higher Education.
Resumo:
Business Intelligence (BI) applications have been gradually ported to the Web in search of a global platform for the consumption and publication of data and services. On the Internet, apart from techniques for data/knowledge management, BI Web applications need interfaces with a high level of interoperability (similar to the traditional desktop interfaces) for the visualisation of data/knowledge. In some cases, this has been provided by Rich Internet Applications (RIA). The development of these BI RIAs is a process traditionally performed manually and, given the complexity of the final application, it is a process which might be prone to errors. The application of model-driven engineering techniques can reduce the cost of development and maintenance (in terms of time and resources) of these applications, as they demonstrated by other types of Web applications. In the light of these issues, the paper introduces the Sm4RIA-B methodology, i.e., a model-driven methodology for the development of RIA as BI Web applications. In order to overcome the limitations of RIA regarding knowledge management from the Web, this paper also presents a new RIA platform for BI, called RI@BI, which extends the functionalities of traditional RIAs by means of Semantic Web technologies and B2B techniques. Finally, we evaluate the whole approach on a case study—the development of a social network site for an enterprise project manager.
Resumo:
The skyrocketing trend for social media on the Internet greatly alters analytical Customer Relationship Management (CRM). Against this backdrop, the purpose of this paper is to advance the conceptual design of Business Intelligence (BI) systems with data identified from social networks. We develop an integrated social network data model, based on an in-depth analysis of Facebook. The data model can inform the design of data warehouses in order to offer new opportunities for CRM analyses, leading to a more consistent and richer picture of customers? characteristics, needs, wants, and demands. Four major contributions are offered. First, Social CRM and Social BI are introduced as emerging fields of research. Second, we develop a conceptual data model to identify and systematize the data available on online social networks. Third, based on the identified data, we design a multidimensional data model as an early contribution to the conceptual design of Social BI systems and demonstrate its application by developing management reports in a retail scenario. Fourth, intellectual challenges for advancing Social CRM and Social BI are discussed.
Resumo:
Large communities built around social media on the Internet offer an opportunity to augment analytical customer relationship management (CRM) strategies. The purpose of this paper is to provide direction to advance the conceptual design of business intelligence (BI) systems for implementing CRM strategies. After introducing social CRM and social BI as emerging fields of research, the authors match CRM strategies with a re-engineered conceptual data model of Facebook in order to illustrate the strategic value of these data. Subsequently, the authors design a multi-dimensional data model for social BI and demonstrate its applicability by designing management reports in a retail scenario. Building on the service blueprinting framework, the authors propose a structured research agenda for the emerging field of social BI.
Resumo:
El propóosito del proyecto aquíı descrito radica en, por una parte, sentar una base de un sistema de Business Inteligence adaptable a diversos casos de negocio, y por otra, diseñar e implementar una solución completa para una empresa especíıfica fácilmente adaptable a otro caso, incluyendo desde los procesos de Extracción, Transformación y Carga, pasando por el data warehouse hasta el Business Analysis y la Minería de Datos.