999 resultados para Nkt Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major group of murine NK T (NKT) cells express an invariant Vα14Jα18 TCR α-chain specific for glycolipid Ags presented by CD1d. Murine Vα14Jα18+ account for 30–50% of hepatic T cells and have potent antitumor activities. We have enumerated and characterized their human counterparts, Vα24Vβ11+ NKT cells, freshly isolated from histologically normal and tumor-bearing livers. In contrast to mice, human NKT cells are found in small numbers in healthy liver (0.5% of CD3+ cells) and blood (0.02%). In contrast to those in blood, most hepatic Vα24+ NKT cells express the Vβ11 chain. They include CD4+, CD8+, and CD4−CD8− cells, and many express the NK cell markers CD56, CD161, and/or CD69. Importantly, human hepatic Vα24+ T cells are potent producers of IFN-γ and TNF-α, but not IL-2 or IL-4, when stimulated pharmacologically or with the NKT cell ligand, α-galactosylceramide. Vα24+Vβ11+ cell numbers are reduced in tumor-bearing compared with healthy liver (0.1 vs 0.5%; p < 0.04). However, hepatic cells from cancer patients and healthy donors release similar amounts of IFN-γ in response to α-galactosylceramide. These data indicate that hepatic NKT cell repertoires are phenotypically and functionally distinct in humans and mice. Depletions of hepatic NKT cell subpopulations may underlie the susceptibility to metastatic liver disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD1d-restricted NKT cells are a novel T cell lineage with unusual features. They co-express some NK cell receptors and recognize glycolipid antigens through an invariant T cell receptor (TCR) in the context of CD1d molecules. Upon activation through the TCR, NKT cells produce large amounts of IFN- and IL-4. It has been proposed that rapid cytokine output by activated NKT cells may induce bystander activation of other lymphoid lineages. The impact of CD1d-restricted NKT cell activation in the induction of B cell-mediated immune responses to infection is still unclear. We show here that CD1-restricted NKT cells contribute to malarial splenomegaly associated with expansion of the splenic B cell pool and enhance parasite-specific antibody formation in response to Plasmodium berghei infection. The increased B cell-mediated response correlates with the ability of NKT cells to promote Th2 immune responses. Additionally, antibody responses against the glycosylphosphatidylinositol (GPI)-anchored protein merozoite surface protein 1 (MSP-1) were found to be significantly lower in CD1-/- mice compared to wild-type animals. P. berghei-infected MHC class II (MHCII)-/- mice also generated antibodies against MSP-1, suggesting that antibody production against GPI-anchored antigens in response to malaria infection can arisefrom both MHCII-dependent and independent pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we investigated the role of Vα14 natural killer T (NKT) cells in transplant immunity. The ability to reject allografts was not significantly different between wild-type (WT) and Vα14 NKT cell-deficient mice. However, in models in which tolerance was induced against cardiac allografts by blockade of lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 or CD28/B7 interactions, long-term acceptance of the grafts was observed only in WT but not Vα14 NKT cell-deficient mice. Adoptive transfer with Vα14 NKT cells restored long-term acceptance of allografts in Vα14 NKT cell-deficient mice. The critical role of Vα14 NKT cells to mediate immunosuppression was also observed in vitro in mixed lymphocyte cultures in which lymphocyte function-associated antigen-1/intercellular adhesion molecule-1 or CD28/B7 interactions were blocked. Experiments using IL-4- or IFN-γ-deficient mice suggested a critical contribution of IFN-γ to the Vα14 NKT cell-mediated allograft acceptance in vivo. These results indicate a critical contribution of Vα14 NKT cells to the induction of allograft tolerance and provide a useful model to investigate the regulatory role of Vα14 NKT cells in various immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human Valpha24(+)Vbeta11(+) natural killer T (NKT) cells are a distinct CD1d-restricted lymphoid subset specifically and potently activated by alpha-galactosylceramide (alpha-GalCer) (KRN7000) presented by CD1 d on antigen-presenting cells. Preclinical models show that activation of Valpha24(+)Vbeta11(+) NKT cells induces effective antitumor immune responses and potentially important secondary immune effects, including activation of conventional T cells and NK cells. We describe the first clinical trial of cancer immune therapy with alpha-GalCer-pulsed CD1d-expressing dendritic cells. The results show that this therapy has substantial, rapid, and highly reproducible specific effects on Valpha24(+)Vbeta11(+) NKT cells and provide the first human in vivo evidence that Valpha24(+)Vbeta11(+) NKT cell stimulation leads to activation of both innate and acquired immunity, resulting in modulation of NK, T-, and B-cell numbers and increased serum interferon-gamma. We present the first clinical evidence that Valpha24(+)Vbeta11(+) NKT cell memory produces faster, more vigorous secondary immune responses by innate and acquired immunity upon restimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite more than a 10-fold increase in T cell numbers in G-CSF-mobilized peripheral blood stem cell (PBSC) grafts, incidence and severity of acute graft-vs-host disease (GVHD) are comparable to bone marrow transplantation. As CD1d-restricted, Valpha24(+)Vbeta11(+) NKT cells have pivotal immune regulatory functions and may influence GVHD, we aimed to determine whether G-CSF has any effects on human NKT cells. In this study, we examined the frequency and absolute numbers of peripheral blood NKT cells in healthy stem cell donors (n = 8) before and following G-CSF (filgrastim) treatment. Effects of in vivo and in vitro G-CSF on NKT cell cytokine expression profiles and on responsiveness of NKT cell subpopulations to specific stimulation by alpha-galactosylceramide (alpha-GalCer) were assessed. Contrary to the effects on conventional T cells, the absolute number of peripheral blood NKT cells was unaffected by G-CSF administration. Furthermore, responsiveness of NKT cells to alpha-GalCer stimulation was significantly decreased (p < 0.05) following exposure to G-CSF in vivo. This hyporesponsiveness was predominantly due to a direct effect on NKT cells, with a lesser contribution from G-CSF-mediated changes in APC. G-CSF administration resulted in polarization of NKT cells toward a Th2, IL-4-secreting phenotype following alpha-GalCer stimulation and preferential expansion of the CD4(+) NKT cell subset. We conclude that G-CSF has previously unrecognized differential effects in vivo on NKT cells and conventional MHC-restricted T cells, and effects on NKT cells may contribute to the lower than expected incidence of GVHD following allogeneic peripheral blood stem cell transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunotherapy strategies aimed at increasing human Valpha24(+)Vbeta11(+) natural killer T (NKT) cell numbers are currently a major focus. To provide further information towards the goal of NKT cell-based immunotherapy, we assessed the effects of age, cancer status and prior anticancer treatment on NKT cell numbers and their expansion capacity following alpha-galactosylceramide (alpha-GalCer) stimulation. The percentage and absolute number of peripheral blood NKT cells was assessed in 40 healthy donors and 109 solid cancer patients ( colorectal ( n = 33), breast ( n = 10), melanoma ( n = 17), lung ( n = 8), renal cell carcinoma ( n = 10), other cancers ( n = 31)). Responsiveness to alpha-GalCer stimulation was also assessed in 28 of the cancer patients and 37 of the healthy donors. Natural killer T cell numbers were significantly reduced in melanoma and breast cancer patients. While NKT numbers decreased with age in healthy donors, NKT cells were decreased in these cancer subgroups despite age and sex adjustments. Prior radiation treatment was shown to contribute to the observed reduction in melanoma patients. Although cancer patient NKT cells were significantly less responsive to alpha-GalCer stimulation, they remained capable of substantial expansion. Natural killer T cells are therefore modulated by age, malignancy and prior anticancer treatment; however, cancer patient NKT cells remain capable of responding to alpha-GalCer-based immenotherapies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective. NKT cells have diverse immune regulatory functions including activation of cells involved in Th1- and Th2-type immune activities. Most previous studies have investigated the functions of NKT cells as a single family but more recent evidence indicates the distinct functional properties of NKT cell subpopulation. This study aims to determine whether NKT cell subpopulations have different stimulatory activities on other immune cells that may affect the outcome of NKT cell-based immunotherapy. Methods. NKT cells and NKT cell subpopulations (CD4(+)CD8(-), CD4(-)CD8(+), CD4(-)CD8(+)) were cocultured with PBMC and their activities on immune cells including CD4(+) and CD8(+) T cells, NK cells, and B cells were assessed by flow cytometry. The production of cytokines in culture was measured by enzyme-linked immunsorbent assay. Results. The CD4(+)CD8(-) NKT cells demonstrated substantially greater stimulatory activities on CD4(+) T cells, NK cells, and B cells than other NKT cell subsets. The CD4(-)CD8(+) NKT cells showed the greatest activity on CD8(+) T cells, and were the only NKT cell subset that activated these immune cells. The CD4(-)CD8(-) NKT cells showed moderate stimulatory activity on CD4(+) T cells and the least activity on other immune cells. Conclusion. The results here suggest that NKT cell subpopulations differ in their abilities to stimulate other immune cells. This highlights the potential importance of manipulating specific NKT cell subpopulations for particular therapeutic situations and of evaluating subpopulations, rather than NKT cells as a group, during investigation of a possible role of NKT cells in various disease settings. (c) 2006 International Society for Experimental Hematology. Published by Elsevier Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There is an increasing awareness of the therapeutic potential for combining immune-based therapies with chemotherapy in the treatment of malignant diseases, but few published studies evaluate possible cytotoxic synergies between chemotherapy and cytotoxic immune cells. Human Vα24 +/Vβ11+ NKT cells are being evaluated for use in cell-based immunotherapy of malignancy because of their immune regulatory functions and potent cytotoxic potential. In this study, we evaluated the cytotoxicity of combinations of chemotherapy and NKT cells to determine whether there is a potential to combine these treatment modalities for human cancer therapy. The cytotoxicity of NKT cells was tested against solid-tumor derived cell lines NCI-H358, DLD-1, HT-29, DU-145, TSU-Pr1 and MDA-MB231, with or without prior treatment of these target cells, with a range of chemotherapy agents. Low concentrations of chemotherapeutic agents led to sensitization of cell lines to NKT-mediated cytotoxicity, with the greatest effect being observed for prostate cancer cells. Synergistic cytotoxicity occurred in an NKT cell in a dose-dependent manner. Chemotherapy agents induced upregulation of cell surface TRAIL-R2 (DR5) and Fas (CD95) expression, increasing the capacity for NKT cells to recognize and kill via TRAIL- and FasL-mediated pathways. We conclude that administration of cytotoxic immune cells after chemotherapy may increase antitumor activities in comparison with the use of either treatment alone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T cells expressing NK cell receptors (NKR) display rapid MHC-unrestricted cytotoxicity and potent cytokine secretion and are thought to play roles in immunity against tumors. We have quantified and characterized NKR+ T cells freshly isolated from epithelial and lamina propria layers of duodenum and colon from 16 individuals with no evidence of gastrointestinal disease and from tumor and uninvolved tissue from 19 patients with colorectal cancer. NKR+ T cell subpopulations were differentially distributed in different intestinal compartments, and CD161+ T cells accounted for over one half of T cells at all locations tested. Most intestinal CD161+ T cells expressed alpha beta TCR and either CD4 or CD8. Significant proportions expressed HLA-DR,CD69 and Fas ligand. Upon stimulation in vitro, CD161+ T cells produced IFN-gamma and TNF-alpha but not IL-4. NKT cells expressing the Valpha24Vbeta11 TCR, which recognizes CD1d,were virtually absent from the intestine, but colonic cells produced IFN-gamma in response to the NKT cell agonist ligand alpha-galactosylceramide. NKR+ T cells were not expanded in colonic tumors compared to adjacent uninvolved tissue. The predominance, heterogeneity and differential distribution of NKR+ T cells at different intestinal locations suggests that they are central to intestinal immunity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

目前多数学者认为树鼩(Tree shrews)是灵长目攀居目树鼩科的一种小型哺乳动物。因其具有体型小、易饲养、价格低、新陈代谢和解剖结构与人类非常接近等优点,树鼩已经成为多种人类疾病研究的良好动物模型。树鼩作为乙型肝炎病毒(HBV)感染的动物模型已经被广泛应用。 自然杀伤性T细胞(Natrual killer T cells, NKT cells)可同时表达NK细胞和T细胞的表面标记,是CD1d限制性的特殊的淋巴细胞亚群,在机体的免疫反应中起重要作用。研究表明,在HBV感染及乙型肝炎的发病过程中,NKT细胞既有抑制和清除病毒的作用,也有加重肝炎及相关病症的负作用。因此,对NKT细胞的研究及恰当地调节将有助于理解和解决在研究乙肝防治中遇到的问题,但在树鼩中,至今尚无NKT细胞的相关报道。 目前公认的检测NKT细胞的手段是用加载了α-GalCer的CD1d四聚体检测。但至今尚无树鼩特异的相关抗体,给树鼩NKT细胞的研究造成很大障碍。因此,获得树鼩特异的CD1d四聚体是研究其NKT细胞特征和功能的前提。本论文作为其中一部分,目的是克隆树鼩CD1d编码区全长序列,为今后抗体的制备奠定基础。 本论文中,我们完成了相关工作并得到了以下结果:1、首次克隆得到了树鼩CD1d基因编码区的全长序列(1002bp),并预测了其氨基酸序列;2、通过比对分析得知其与灵长类的CD1d同源性较高,达到80%以上;同时,通过系统进化树分析,得知树鼩与灵长类亲缘关系较其它物种更近;3、首次分析了树鼩的CD1d mRNA在不同组织中的表达情况,发现树鼩的肝,肺中CD1d表达量较高,外周血和脾脏中也有少量表达。 总之,我们首次克隆得到了树鼩CD1d的编码区的全长序列,为今后制备CD1d四聚体进而研究树鼩的NKT细胞奠定了基础;同时首次分析了CD1d mRNA在树鼩的部分组织中的表达情况,结合以往其它物种中CD1d组织分布情况的检测结果,为树鼩中CD1d分子的研究提供了材料和数据基础。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural killer T (NKT) cells are a heterogeneous population of lymphocytes that recognize antigens presented by CD1d and have attracted attention because of their potential role linking innate and adaptive immune responses. Peripheral NKT cells display a memory-activated phenotype and can rapidly secrete large amounts of pro-inflammatory cytokines upon antigenic activation. In this study, we evaluated NKT cells in the context of patients co-infected with HIV-1 and Mycobacterium leprae. The volunteers were enrolled into four groups: 22 healthy controls, 23 HIV-1-infected patients, 20 patients with leprosy and 17 patients with leprosy and HIV-1-infection. Flow cytometry and ELISPOT assays were performed on peripheral blood mononuclear cells. We demonstrated that patients co-infected with HIV-1 and M.leprae have significantly lower NKT cell frequencies [median 0.022%, interquartile range (IQR): 0.0070.051] in the peripheral blood when compared with healthy subjects (median 0.077%, IQR: 0.0320.405, P < 0.01) or HIV-1 mono-infected patients (median 0.072%, IQR: 0.0300.160, P < 0.05). Also, more NKT cells from co-infected patients secreted interferon-? after stimulation with DimerX, when compared with leprosy mono-infected patients (P = 0.05). These results suggest that NKT cells are decreased in frequency in HIV-1 and M.leprae co-infected patients compared with HIV-1 mono-infected patients alone, but are at a more activated state. Innate immunity in human subjects is strongly influenced by their spectrum of chronic infections, and in HIV-1-infected subjects, a concurrent mycobacterial infection probably hyper-activates and lowers circulating NKT cell numbers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural killer (NK) cells play crucial roles in innate immunity and express CD39 (Ecto-nucleoside triphosphate diphosphohydrolase 1 [E-NTPD1]), a rate-limiting ectonucleotidase in the phosphohydrolysis of extracellular nucleotides to adenosine. We have studied the effects of CD39 gene deletion on NK cells in dictating outcomes after partial hepatic ischemia/reperfusion injury (IRI). We show in mice that gene deletion of CD39 is associated with marked decreases in phosphohydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate to adenosine monophosphate on NK cells, thereby modulating the type-2 purinergic (P2) receptors demonstrated on these cells. We note that CD39-null mice are protected from acute vascular injury after single-lobe warm IRI, and, relative to control wild-type mice, display significantly less elevation of aminotransferases with less pronounced histopathological changes associated with IRI. Selective adoptive transfers of immune cells into Rag2/common gamma null mice (deficient in T cells, B cells, and NK/NKT cells) suggest that it is CD39 deletion on NK cells that provides end-organ protection, which is comparable to that seen in the absence of interferon gamma. Indeed, NK effector mechanisms such as interferon gamma secretion are inhibited by P2 receptor activation in vitro. Specifically, ATPgammaS (a nonhydrolyzable ATP analog) inhibits secretion of interferon gamma by NK cells in response to interleukin-12 and interleukin-18, providing a mechanistic link between CD39 deletion and altered cytokine secretion. CONCLUSION: We propose that CD39 deficiency and changes in P2 receptor activation abrogate secretion of interferon gamma by NK cells in response to inflammatory mediators, thereby limiting tissue damage mediated by these innate immune cells during IRI.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Natural killer T (NKT) cells constitute a distinct subpopulation of T cells with a unique antigen specificity, prompt effector functions, and an unusual tissue distribution. NKT cells are especially abundant in the liver, but their physiological function in this organ remains unclear. In the present study, we examined the possible contribution of NKT cells to a murine model of hepatitis induced by i.v. injection of Con A. CD1-deficient mice lacking NKT cells were highly resistant to Con A-induced hepatitis. Adoptive transfer of hepatic NKT cells isolated from wild-type mice, but not from FasL-deficient gld mice, sensitized CD1-deficient mice to Con A-induced hepatitis. Furthermore, adoptive transfer of hepatic mononuclear cells from wild-type mice, but not from CD1-deficient mice, sensitized gld mice to Con A-induced hepatitis. Upon Con A administration, hepatic NKT cells rapidly up-regulated cell surface FasL expression and FasL-mediated cytotoxicity. At the same time, NKT cells underwent apoptosis leading to their rapid disappearance in the liver. These results implicated FasL expression on liver NKT cells in the pathogenesis of Con A-induced hepatitis, suggesting a similar pathogenic role in human liver diseases such as autoimmune hepatitis.