418 resultados para Nitrure d’aluminium (AlN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Une étape cruciale dans la fabrication des MEMS de haute fréquence est la gravure par plasma de la couche mince d’AlN de structure colonnaire agissant comme matériau piézoélectrique. Réalisé en collaboration étroite avec les chercheurs de Teledyne Dalsa, ce mémoire de maîtrise vise à mieux comprendre les mécanismes physico-chimiques gouvernant la cinétique ainsi que la formation de dommages lors de la gravure de l’AlN dans des plasmas Ar/Cl2/BCl3. Dans un premier temps, nous avons effectué une étude de l’influence des conditions opératoires d’un plasma à couplage inductif sur la densité des principales espèces actives de la gravure, à savoir, les ions positifs et les atomes de Cl. Ces mesures ont ensuite été corrélées aux caractéristiques de gravure, en particulier la vitesse de gravure, la rugosité de surface et les propriétés chimiques de la couche mince. Dans les plasmas Ar/Cl2, nos travaux ont notamment mis en évidence l’effet inhibiteur de l’AlO, un composé formé au cours de la croissance de l’AlN par pulvérisation magnétron réactive et non issu des interactions plasmas-parois ou encore de l’incorporation d’humidité dans la structure colonnaire de l’AlN. En présence de faibles traces de BCl3 dans le plasma Ar/Cl2, nous avons observé une amélioration significative du rendement de gravure de l’AlN dû à la formation de composés volatils BOCl. Par ailleurs, selon nos travaux, il y aurait deux niveaux de rugosité post-gravure : une plus faible rugosité produite par la présence d’AlO dans les plasmas Ar/Cl2 et indépendante de la vitesse de gravure ainsi qu’une plus importante rugosité due à la désorption préférentielle de l’Al dans les plasmas Ar/Cl2/BCl3 et augmentant linéairement avec la vitesse de gravure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ab initio density functional calculations were performed to study the geometry and electronic structure of a prototypical zigzag AlN nanoribbon. We find that H-terminated zigzag 10-AlN nanoribbons have a non-direct band gap and are nonmagnetic. When a transverse electric field is applied, the band gap decreases monotonically with the strength of field E. Zigzag AlN nanoribbons with the N edge unpassivated display strong spin-polarization close to the Fermi level, which will result in spin-anisotropic transport. These results suggest potential applications for the development of AlN nanoribbon-based nanoelectronics applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optically transparent, highly oriented nanocrystalline AlN(002) films have been synthesized using a hybrid plasma enhanced chemical vapor deposition and plasma-assisted radio frequency (rf) magnetron sputtering process in reactive Ar+ N2 and Ar+ N2 + H2 gas mixtures at a low Si(111)/glass substrate temperature of 350 °C. The process conditions, such as the sputtering pressure, rf power, substrate temperature, and N2 concentration were optimized to achieve the desired structural, compositional, and optical characteristics. X-ray diffractometry reveals the formation of highly c -oriented AlN films at a sputtering pressure of 0.8 Pa. Field emission scanning electron microscopy suggests the uniform distribution of AlN grains over large surface areas and also the existence of highly oriented in the (002) direction columnar structures of a typical length ∼100-500 nm with an aspect ratio of ∼7-15. X-ray photoelectron and energy dispersive x-ray spectroscopy suggest that films deposited at a rf power of 400 W feature a chemically pure and near stoichiometric AlN. The bonding states of the AlN films have been confirmed by Raman and Fourier transform infrared spectroscopy showing strong E2 (high) and E1 transverse optical phonon modes. Hydrogenated AlN films feature an excellent optical transmittance of ∼80% in the visible region of the spectrum, promising for advanced optical applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Size-uniform Si nanodots (NDs) are synthesized on an AlN buffer layer at low Si(111) substrate temperatures using inductively coupled plasma-assisted magnetron sputtering deposition. High-resolution electron microscopy reveals that the sizes of the Si NDs range from 9 to 30 nm. Room-temperature photoluminescence (PL) spectra indicate that the energy peak shifts from 738 to 778 nm with increasing the ND size. In this system, the quantum confinement effect is fairly strong even for relatively large (up to 25 nm in diameter) NDs, which is promising for the development of the next-generation all-Si tandem solar cells capable of effectively capturing sunlight photons with the energies between 1.7 (infrared: large NDs) and 3.4 eV (ultraviolet: small NDs). The strength of the resulting electron confinement in the Si/AlN ND system is evaluated and justified by analyzing the measured PL spectra using the ionization energy theory approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of residual oxygen in nitrogen on the formation of AlN-Al matrix by reactive infiltration has been investigated. Increasing the oxygen content from 10 ppm upwards decreased the nitride content in the matrix from 64 to 6%, Based on the analysis of the availability of oxygen at the Al-melt/gas interface, three distinct scenarios have been proposed (i) at lowest values, oxygen does not interfere with either infiltration or nitridation reaction; (ii) at intermediate values, nitridation is suppressed, however infiltration continues; and (iii) at a critical upper value, the melt passivates without any infiltration. This phenomenon offers control of the AlN/Al ratio in the matrix and the possibility of creation of microstructural gradierits by the appropriate choice of gas mixtures. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium nitride (AlN)-Al matrices reinforced with Al2O3 particulate have been fabricated by reactive infiltration of Al-2% Mg alloy into Al2O3 preforms in N-2 in the temperature range of 900-1075 degreesC. The growth of composites of useful thickness was facilitated by the presence of a Mg-rich external getter, in the absence of which composite growth is self-limiting and terminates prematurely. Successful growth of composites has been attributed to the reduction in residual oxygen partial pressure brought about by the reaction with oxygen of highly volatile Mg in the getter alloy. The microstructure of the matrix consists of AlN-rich regions contiguous with the particulate with metal-rich channels in-between, thereby suggesting that nitridation initiates by preferential wicking of alloy along the particle surfaces. The increase in nitride content of the matrix with temperature is consistent with hardness values that vary between similar to3 and 10 GPa. (C) 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports optical and nanomechanical properties of predominantly a-axis oriented AlN thin films. These films were deposited by reactive DC magnetron sputtering technique at an optimal target to substrate distance of 180 mm. X-ray rocking curve (FWHM = 52 arcsec) studies confirmed the preferred orientation. Spectroscopic ellipsometry revealed a refractive index of 1.93 at a wavelength of 546 nm. The hardness and elastic modulus of these films were 17 and 190 GPa, respectively, which are much higher than those reported earlier can be useful for piezoelectric films in bulk acoustic wave resonators. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4772204]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integration of Metal Organic Chemical Vapor Deposition (MOCVD) grown group III-A nitride device stacks on Si (111) substrates is critically dependent on the quality of the first AlN buffer layer grown. A Si surface that is both oxide-free and smooth is a primary requirement for nucleating such layers. A single parameter, the AlN layer growth stress, is shown to be an early (within 50 nm), clear (<0.5 GPa versus > 1GPa), and fail-safe indicator of the pre-growth surface, and the AlN quality required for successful epitaxy. Grain coalescence model for stress generation is used to correlate growth stress, the AlN-Si interface, and crystal quality. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure and chemistry of the interface between a Si(111) substrate and an AlN(0001) thin film grown by metalorganic vapor phase epitaxy have been investigated at a subnanometer scale using high-angle annular dark field imaging and electron energy-loss spectroscopy. 〈1120̄〉AlN ∥ 〈110〉Si and 〈0001〉AlN ∥ 〈111〉 Si epitaxial relations were observed and an Al-face polarity of the AlN thin film was determined. Despite the use of Al deposition on the Si surface prior to the growth, an amorphous interlayer of composition SiNx was identified at the interface. Mechanisms leading to its formation are discussed. © 2010 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminum nitride (AlN) films were prepared on gamma-LiAlO2 substrates by radio frequency (rf) magnetron sputtering. The influence of substrate temperature (T-s) and nitrogen (N-2) concentration on film growth was investigated. The X-ray diffraction (XRD) results reveal that highly c-axis oriented AlN films can be obtained in the temperature range from room temperature (RT) to 300 degrees C. A smoother surface and a crystalline quality decrease with increasing N-2 concentration have been observed by XRD and atomic force microscopy (AFM) for the films deposited at lower substrate temperature. On the contrary, the degradation of the surface smoothness and the higher crystalline quality can be observed for the films deposited at a higher substrate temperature with N-2-rich ambient. The growth mechanism which leads to different crystalline quality of the films is discussed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solidly mounted resonators (SMRs) with a top carbon nanotubes (CNTs) surface coating that doubles as an electrode and as a sensing layer have been fabricated. The influence of the CNTs on the frequency response of the resonators was studied by direct comparison to identical devices with a top metallic electrode. It was found that the CNTs introduced significantly less mass load on the resonators and these devices exhibited a greater quality factor, Q (>2000, compared to ∼1000 for devices with metal electrodes), which increases the gravimetric sensitivity of the devices by allowing the tracking of smaller frequency shifts. Protein solutions with different concentrations were loaded on the top of the resonators and their responses to mass-load from physically adsorbed coatings were investigated. Results show that resonators using CNTs as the top electrode exhibited a higher frequency change for a given load (∼0.25 MHz cm2 ng-1) compared to that of a metal thin film electrode (∼0.14 MHz cm2 ng-1), due to the lower mass of the CNT electrodes and their higher active surface area compared to that of a thin film metal electrode. It is therefore concluded that the use of CNT electrodes on resonators for their use as gravimetric biosensors is a significant improvement over metallic electrodes that are normally employed. © 2011 Elsevier B.V. All rights reserved.