982 resultados para Nitrogen rates


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global cereal production will need to increase by 50% to 70% to feed a world population of about 9 billion by 2050. This intensification is forecast to occur mostly in subtropical regions, where warm and humid conditions can promote high N2O losses from cropped soils. To secure high crop production without exacerbating N2O emissions, new nitrogen (N) fertiliser management strategies are necessary. This one-year study evaluated the efficacy of a nitrification inhibitor (3,4-dimethylpyrazole phosphate—DMPP) and different N fertiliser rates to reduce N2O emissions in a wheat–maize rotation in subtropical Australia. Annual N2O emissions were monitored using a fully automated greenhouse gas measuring system. Four treatments were fertilized with different rates of urea, including a control (40 kg-N ha−1 year−1), a conventional N fertiliser rate adjusted on estimated residual soil N (120 kg-N ha−1 year−1), a conventional N fertiliser rate (240 kg-N ha−1 year−1) and a conventional N fertiliser rate (240 kg-N ha−1 year−1) with nitrification inhibitor (DMPP) applied at top dressing. The maize season was by far the main contributor to annual N2O emissions due to the high soil moisture and temperature conditions, as well as the elevated N rates applied. Annual N2O emissions in the four treatments amounted to 0.49, 0.84, 2.02 and 0.74 kg N2O–N ha−1 year−1, respectively, and corresponded to emission factors of 0.29%, 0.39%, 0.69% and 0.16% of total N applied. Halving the annual conventional N fertiliser rate in the adjusted N treatment led to N2O emissions comparable to the DMPP treatment but extensively penalised maize yield. The application of DMPP produced a significant reduction in N2O emissions only in the maize season. The use of DMPP with urea at the conventional N rate reduced annual N2O emissions by more than 60% but did not affect crop yields. The results of this study indicate that: (i) future strategies aimed at securing subtropical cereal production without increasing N2O emissions should focus on the fertilisation of the summer crop; (ii) adjusting conventional N fertiliser rates on estimated residual soil N is an effective practice to reduce N2O emissions but can lead to substantial yield losses if the residual soil N is not assessed correctly; (iii) the application of DMPP is a feasible strategy to reduce annual N2O emissions from sub-tropical wheat–maize rotations. However, at the N rates tested in this study DMPP urea did not increase crop yields, making it impossible to recoup extra costs associated with this fertiliser. The findings of this study will support farmers and policy makers to define effective fertilisation strategies to reduce N2O emissions from subtropical cereal cropping systems while maintaining high crop productivity. More research is needed to assess the use of DMPP urea in terms of reducing conventional N fertiliser rates and subsequently enable a decrease of fertilisation costs and a further abatement of fertiliser-induced N2O emissions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current understanding is that high planting density has the potential to suppress weeds and crop-weed interactions can be exploited by adjusting fertilizer rates. We hypothesized that (a) high planting density can be used to suppress Rottboellia cochinchinensis growth and (b) rice competitiveness against this weed can be enhanced by increasing nitrogen (N) rates. We tested these hypotheses by growing R. cochinchinensis alone and in competition with four rice planting densities (0, 100, 200, and 400 plants m-2) at four N rates (0, 50, 100, and 150 kg ha-1). At 56 days after sowing (DAS), R. cochinchinensis plant height decreased by 27-50 %, tiller number by 55-76 %, leaf number by 68-84 %, leaf area by 70-83 %, leaf biomass by 26-90 %, and inflorescence biomass by 60-84 %, with rice densities ranging from 100 to 400 plants m-2. All these parameters increased with an increase in N rate. Without the addition of N, R. cochinchinensis plants were 174 % taller than rice; whereas, with added N, they were 233 % taller. Added N favored more weed biomass production relative to rice. R. cochinchinensis grew taller than rice (at all N rates) to avoid shade, which suggests that it is a "shade-avoiding" plant. R. cochinchinensis showed this ability to reduce the effect of rice interference through increased leaf weight ratio, specific stem length, and decreased root-shoot weight ratio. This weed is more responsive to N fertilizer than rice. Therefore, farmers should give special consideration to the application timing of N fertilizer when more N-responsive weeds are present in their field. Results suggest that the growth and seed production of R. cochinchinensis can be decreased considerably by increasing rice density to 400 plants m-2. There is a need to integrate different weed control measures to achieve complete control of this noxious weed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O N é o nutriente que proporciona as maiores respostas no crescimento das gramas, e a adubação nitrogenada adequada pode proporcionar a formação do tapete com boa qualidade em menor tempo. Neste trabalho, objetivou-se avaliar a influência da adubação nitrogenada na produção e qualidade de tapetes de grama-bermuda. O experimento foi instalado e conduzido em área de produção comercial de grama, localizada na cidade de Capela do Alto, SP. A grama utilizada foi a Cynodon dactylon (Pers) L., conhecida como grama-bermuda. O delineamento experimental utilizado foi o de blocos casualizados, com cinco tratamentos e quatro repetições. Os tratamentos foram constituídos por cinco doses de N: 0, 150, 300, 450 e 600 kg ha-1. O aumento das doses de N aumentou a taxa de cobertura do solo pela gramabermuda, reduzindo o tempo para formação do tapete. O máximo acúmulo de matéria seca de rizomas + estolões + raízes foi proporcionado pela dose de 354 kg ha-1 de N, e a resistência dos tapetes, pela dose de 365 kg ha-1 de N. Doses de N entre 354 e 365 kg ha-1, aumentaram a resistência dos tapetes e, com isso, a capacidade deles serem manuseados após a colheita, podendo promover assim maior rendimento da área.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cation mobility in acidic soils with low organic-matter contents depends not only on sorption intensity but also on the solubility of the species present in soil solution. In general, the following leaching gradient is observed: potassium (K+) magnesium (Mg2+) calcium (Ca2+) aluminum (Al3+). To minimize nutrient losses and ameliorate the subsoil, soil solution must be changed, favoring higher mobility of M2+ (metal ions) forms. This would be theoretically possible if plant residues were kept on the soil surface. An experiment was conducted in pots containing a Distroferric Red Latosol, with soil solution extractors installed at two depths. Pearl millet, black oat, and oilseed radish residues were laid on the soil surface, and nitrogen (as ammonium nitrate) was applied at rates ranging from 0 to 150mgkg-1. Corn was grown for 52 days. Except for K+ and ammonium (NH4 +), nitrogen rates and plant residues had little effect upon the concentrations and forms of the elements in the soil solution. Presence of cover crop residues on soil surface decreased the effect of nitrogen fertilizer on Ca leaching. More than 90% of the Ca2+, Mg2+, and K+ were found as free ions. The Al3+ was almost totally complexed as Al(OH3)0. Nitrogen application increased the concentrations of almost all the ions in soil solution, including Al3+, although there was no modification in the leaching gradient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altas produtividades de trigo requerem um bom manejo da adubação nitrogenada. O objetivo deste trabalho foi avaliar os efeitos de diferentes doses de nitrogênio na semeadura usando o Entec (fonte de N com inibidor de nitrificação), ou em cobertura, utilizando a ureia, em quatro cultivares de trigo. O experimento foi desenvolvido em área experimental pertencente à Faculdade de Engenharia de Ilha Solteira - UNESP, em um Latossolo Vermelho distrófico epieutrófico álico textura argilosa, o qual foi nativamente ocupado por vegetação de Cerrado. O delineamento estatístico foi o de blocos ao acaso, com quatro doses de N (0, 60, 120 e 180 kg ha-1) na semeadura, usando o Entec, ou em cobertura aos 40 dias (início do alongamento), empregando a ureia e os cultivares E 21, E 22, E 42 e IAC 370, em quatro repetições. Os cultivares de trigo mais produtivos foram o E 21 e o E 42. O cultivar E 22 apresentou maior altura de plantas e altas notas de acamamento, com consequente menor produtividade de grãos. Não houve diferença significativa entre o Entec (aplicado na semeadura) e a ureia (aplicada em cobertura) para produtividade de grãos e para nenhuma das outras avaliações, porém a ureia proporcionou maior teor de N foliar, e o Entec, maior número de espiguetas não desenvolvidas. O incremento das doses de N influenciou negativamente a massa hectolítrica, alterando assim a qualidade dos grãos de trigo. O N aumentou a produtividade de grãos de trigo até a dose de 82 kg ha-1 de N, usando Entec aplicado na semeadura ou ureia aplicada em cobertura.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crop simulation models have the potential to assess the risk associated with the selection of a specific N fertilizer rate, by integrating the effects of soil-crop interactions on crop growth under different pedo-climatic and management conditions. The objective of this study was to simulate the environmental and economic impact (nitrate leaching and N2O emissions) of a spatially variable N fertilizer application in an irrigated maize field in Italy. The validated SALUS model was run with 5 nitrogen rates scenarios, 50, 100, 150, 200, and 250 kg N ha−1, with the latter being the N fertilization adopted by the farmer. The long-term (25 years) simulations were performed on two previously identified spatially and temporally stable zones, a high yielding and low yielding zone. The simulation results showed that N fertilizer rate can be reduced without affecting yield and net return. The marginal net return was on average higher for the high yield zone, with values ranging from 1550 to 2650 € ha−1 for the 200 N and 1485 to 2875 € ha−1 for the 250 N. N leaching varied between 16.4 and 19.3 kg N ha−1 for the 200 N and the 250 N in the high yield zone. In the low yield zone, the 250 N had a significantly higher N leaching. N2O emissions varied between 0.28 kg N2O ha−1 for the 50 kg N ha−1 rate to a maximum of 1.41 kg N2O ha−1 for the 250 kg N ha−1 rate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

O silício não é considerado um elemento essencial para o crescimento e desenvolvimento das plantas, entretanto, sua absorção traz inúmeros benefícios, principalmente ao arroz, como aumento da espessura da parede celular, conferindo resistência mecânica a penetração de fungos, melhora o ângulo de abertura das folhas tornando-as mais eretas, diminuindo o auto-sombreamento e aumentando a resistência ao acamamento, especialmente sob altas doses de nitrogênio. O presente trabalho teve por objetivo avaliar os efeitos da adubação nitrogenada e silicatada nos componentes vegetativos, nos componentes da produção, na altura da planta e na produtividade da cultivar de arroz IAC 202. O experimento foi constituído da combinação de três doses de nitrogênio (5, 75 e 150 mg de N kg-1 de solo) aplicado na forma de uréia e quatro doses de silício (0, 200, 400 e 600 mg de SiO2 kg-1 de solo), aplicado na forma de silicato de cálcio. O delineamento experimental utilizado foi o inteiramente casualizado em esquema fatorial 3 ´ 4 (N = 5). A adubação nitrogenada aumentou o número de colmos e panículas por metro quadrado e o número total de espiguetas, refletindo na produtividade de grãos. O perfilhamento excessivo causado pela adubação nitrogenada inadequada causou redução na porcentagem de colmos férteis, na fertilidade das espiguetas e da massa de grãos. A adubação silicatada reduziu o número de espiguetas chochas por panícula e aumentou a massa de grãos sem, contudo, refletir na produtividade de grãos.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

É importante a busca por melhores rentabilidades para a cultura do trigo por meio de tecnologias que reduzam custos de produção e proporcionem sustentabilidade à agricultura brasileira. Assim, o objetivo deste trabalho foi avaliar a rentabilidade da cultura do trigo em sistema plantio direto, visando reduzir doses de nitrogênio em cobertura, pelo cultivo de adubos verdes anterior ao do trigo. O experimento foi realizado em Selvíria (MS), Brasil, no ano 2009/10. O delineamento utilizado foi o de blocos casualizados com 36 tratamentos, em parcelas subdividas, com quatro repetições. As parcelas foram formadas por seis tipos de adubos verdes (guandu BRS Mandarim, Crotalaria juncea, milheto BRS 1501, pousio e os consórcios milheto + guandu e milheto + crotalária), que forneceram palha para o plantio direto do trigo no inverno, após a cultura de arroz na safra de verão. As subparcelas foram formadas por seis doses de nitrogênio (0, 25, 50,75, 100 e 125 kg ha-1 de N) em uma aplicação em cobertura, ten-do como fonte a ureia. O trigo cultivado, após a semeadura dos adubos verdes na safra de inverno anterior, sem a aplicação de nitrogênio em cobertura e na dose 25 kg ha-1 de N, apresentou com maior frequência custos de produção superior à receita bruta. O custo de produção de trigo cultivado após os consórcios de milheto + guandu e milheto + crotalária na safra de inverno anterior, associado a doses de nitrogênio de 50 e 75 kg ha-1 de N, proporcionou maior lucratividade em relação aos demais adubos verdes avaliados.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objectives of this study were to evaluate morphogenetic characteristics and tillering dynamics in Tanzania grass fertilized and non-fertilized with nitrogen, under intermittent grazing, in the spring and the summer. The main plots were composed of four nitrogen rates (0, 100, 200 and 300 kg/ha) and the subplots were growth seasons: spring (October, November and December) and summer (January, February and March). The experimental design was of randomized block with plots subdivided by time (seasons of the year) and four replications. Urea was used as nitrogen supply and was divided into two applications: one in the spring and another in the summer. The experimental units fertilized with N rates of 200 and 300 kg/ha showed six cycles of pasture, with an average of 27 days of pasture interval, while the treatments with no fertilization and 100 kg/ha of N showed only four and five cycles of pasture, respectively. Leaf elongation rate (LER) and the leaf appearance rate (LAR) increased linearly with increasing of N rates. The greatest population density occurred in summer with the higher nitrogen rates. The treatment without N fertilization showed the lowest growth of tiller population, while the other treatments exhibited growth rates above 50% when compared with non-fertilized samples. Nitrogen rates significantly affect the leaf appearance rate and the leaf elongation rate, as well as the number of live leaves in plants of Tanzania grass in both spring and summer.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study was to investigate the influence of different levels of biofertilizers from cattle and swine manure on the structural, morphogenetic and productive characteristics of Brachiaria brizantha cv. Piata. The experiment was arranged in a completely randomized factorial design with split plots. The plots were defined by eight treatments: two biofertilizers (cattle and swine), four levels (0, 100, 200 and 300 kg N.ha(-1)) and subplots by four different cutting periods. The cutting for plant uniformity was performed at 45 days after sowing at 15 cm above the soil surface. The biofertilizeres were applied in a single level, after the cutting of plants, in rates of 0, 0.23 and 0.19, 0.45 and 0.38, 0.68 and 0.57 liters pot(-1) for the biofertilizers from cattle and swine manure, respectively. These rates were also equivalent to levels of 0, 100, 200 and 300 kg N.ha(-1). There was no significant difference between the types of biofertilizers as there was no interaction between them and the different levels, hence both biofertilizers could be applied without any loss of nutrient intake by the plants used in this experiment. There was a significant difference between the production of green and dry matter, the leaf appearance rate, phyllochron, leaf and pseudostem elongation rates, number of green leaves, final leaf length, number and weight of tillers, according to the increase of nitrogen rates, following linear prediction model. Effect of the cutting periods was also observed, once the plants harvested during the summer presented greater performance of structural and morphogenetic characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Against the background of a growing world population, rice (Oryza sativa L.) consumption is expected to grow faster than its production. Therefore, an appropriate question would be: how to increase productivity in the shortterm? In this respect, it becomes important the implementation of modern agricultural production systems, such as upland rice with supplemental sprinkler irrigation. Additional information is needed to maximize the available resources, with special attention given to research on the use of nitrogen. This study aimed to evaluate the agronomic performance of commercial rice cultivars with different plant characteristics in upland conditions with supplemental sprinkler irrigation, when subjected to nitrogen in topdress application at the R1 stage (panicle differentiation). The experiment was arranged in a randomized block with split plot design, with 65 treatments, consisting of the combination of 13 cultivars in the plots, and five nitrogen levels in the subplots (0, 40, 80, 120 and 160 kg ha-1), with four replications. Genetic variability was detected among rice cultivars and the agronomic performance in response to the applied nitrogen. The topdressing application of nitrogen increases, in general, the production components and grain yield in rice. Cultivars BRS Primavera, Caiapó and IAC 202 stood out for grain yield, followed by Baldo, Carnaroli, BRS Curinga and IAC 500 with lower yields.