981 resultados para Nitrogen efficiency


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to evaluate intensity, productivity and efficiency in agriculture in Finland and show implications for N and P fertiliser management. Environmental concerns relating to agricultural production have been and still are focused on arguments about policies that affect agriculture. These policies constrain production while demand for agricultural products such as food, fibre and energy continuously increase. Therefore the importance of increasing productivity is a great challenge to agriculture. Over the last decades producers have experienced several large changes in the production environment such as the policy reform when Finland joined the EU 1995. Other and market changes occurred with the further EU enlargement with neighbouring countries in 2005 and with the decoupling of supports over the 2006-2007 period. Decreasing prices a decreased number of farmers and decreased profitability in agricultural production have resulted from these changes and constraints and of technological development. It is known that the accession to the EU 1995 would herald changes in agriculture. Especially of interest was how the sudden changes in prices of commodities on especially those of cereals, decreased by 60%, would influence agricultural production. The knowledge of properties of the production function increased in importance as a consequence of price changes. A research on the economic instruments to regulate productions was carried out and combined with earlier studies in paper V. In paper I the objective was to compare two different technologies, the conventional farming and the organic farming, determine differences in productivity and technical efficiency. In addition input specific or environmental efficiencies were analysed. The heterogeneity of agricultural soils and its implications were analysed in article II. In study III the determinants of technical inefficiency were analysed. The aspects and possible effects of the instability in policies due to a partial decoupling of production factors and products were studied in paper IV. Consequently connection between technical efficiency based on the turnover and the sales return was analysed in this study. Simple economic instruments such as fertiliser taxes have a direct effect on fertiliser consumption and indirectly increase the value of organic fertilisers. However, fertiliser taxes, do not fully address the N and P management problems adequately and are therefore not suitable for nutrient management improvements in general. Productivity of organic farms is lower on average than conventional farms and the difference increases when looking at selling returns only. The organic sector needs more research and development on productivity. Livestock density in organic farming increases productivity, however, there is an upper limit to livestock densities on organic farms and therefore nutrient on organic farms are also limited. Soil factors affects phosphorous and nitrogen efficiency. Soils like sand and silt have lower input specific overall efficiency for nutrients N and P. Special attention is needed for the management on these soils. Clay soils and soils with moderate clay content have higher efficiency. Soil heterogeneity is cause for an unavoidable inefficiency in agriculture.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O objetivo do trabalho foi elaborar um modelo para estimar as exigências de proteína bruta (PB) para poedeiras leves, usando o método fatorial. Para determinar as exigências de proteína bruta (PB) para manutenção foi utilizada a técnica do balanço de nitrogênio. A exigência de proteína bruta para o ganho de peso foi determinada em função do conteúdo de nitrogênio na carcaça e a eficiência de utilização do nitrogênio da dieta. A exigência de PB, para produção de ovos, foi determinada considerando o teor de PB determinado nos ovos e a eficiência de deposição do nitrogênio no ovo. A partir dos valores das exigências para manutenção, para o ganho e produção foi elaborada uma equação para predizer as exigências diárias de PB (g/ ave/ dia) para poedeiras: PB = 1,94. P0,75 + 0,48.G + 0,301.O, em que P = peso corporal (kg), G = ganho de peso diário (g/dia) e O = massa de ovos produzida (g/ave/dia).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to evaluate different inulin and probiotic levels as supplement in diets for piglets on nutrient digestibility and nitrogen balance. Twenty four crossbred barrows (Pietráin × Landrace × Large White), with initial average weight of 18.00 ± 0.38 kg, were individually housed in metabolic cages. The experimental design was a completely randomized block, in a 2 × 3 factorial scheme (probiotic levels: 0.30 and 0.60 %; inulin levels: 0.00, 0.25 and 0.50 %), with four replications. The probiotic used was a mix of Lactobacillus acidophillus, Streptococcus faecium and Bifidobacterium bifidum. The inulin was the prebiotic used in this study, characterized as an indigestible carbohydrate formed by fructooligosaccharides. Inulin levels provided a quadratic effect (p<0.05) on the digestibility coefficients of dry matter, organic matter and ether extract, and the better responses were obtained supplementing 0.194, 0.185 and 0.188 %. Quadratic effects were observed for the nitrogen excreted in feces, total nitrogen excretion, nitrogen efficiency use and nitrogen digestibility. The inulin levels of 0.194 and 0.216 %, in piglet diets, were the better for dry matter digestibility and total nitrogen excretion, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We evaluated animal production on black oats (Avena strigosa Schreb.) and italian ryegrass (Lolium multiflorum) pasture submitted to nitrogen top fertilization of 0; 150 and 300 kg ha-1, in the form of urea. We used 36 calves with average age and average weight of 10.5 months and 180 kg, respectively, as test-animals. The grazing system used was continuous with variable stocking rate. The block design was completely randomized with three replicates (paddock). Average weight gain was similar for the levels evaluated (0.925; 0.969 and 1.045 kg day-1, respectively). Stocking rate and live weight gain per hectare showed a linear relation with nitrogen levels. The efficiency of animal production was 2.040 and 1.766 kg of weight gain per kg of nitrogen used for the dose of 150 and 300 of N, respectively. The stocking rate and live weight gain per hectare of beef calves increased with the nitrogen levels, from 0 to 300 kg of N ha-1. However, the best efficiency in weight gain per unit of nitrogen applied was obtained with the dose of 150 kg of N ha-1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrogen, along with K, is the most limiting nutrient for sunflower productivity. The objective of this research work was to determine the best level of nitrogen in a fertilization formula for the cultivation of sunflower of the ‘HELIO – 251’ cultivar. The fertilization procedure was that recommended for the state of São Paulo for sunflower crop, except that, in each one of the treatments, N doses were of 50, 70, 90, 110, and 130 kg ha-1 . These treatments were distributed in the field according to a randomized complete block design with 4 replications. The N dose which resulted in the highest grain yield, highest oil content, and plant dry matter was of 100 kg ha-1 . Leaf N content and 1,000 grains weight increased with N doses.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L’objectif général des travaux présentes dans cette thèse de doctorat était d’établir la relation entre l’alimentation et la composition du lait des vaches laitières, en mettant l’emphase sur les teneurs en matières grasses (TMG), sur l’urée du lait et sur l’efficience d’utilisation de l’azote. Pour la TMG, c’est principalement la relation entre cette teneur et la différence alimentaire cations-anions (DACA) qui a été investiguée. Une base de données de 2 142 troupeaux québécois a été utilisée et la relation entre la composition de la ration, incluant la DACA, et la TMG du lait a été déterminée à l’aide de régressions multiples. Il a été possible de prédire entre 32 et 66 % de la variation de la TMG du lait en fonction du stade de lactation. Malgré plusieurs interactions trouvées, une augmentation de la DACA, une supplémentation avec de l’acide palmitique et une distribution des aliments en ration totale mélangée ont eu une relation positive avec la TMG du lait, tandis qu’une augmentation de la proportion de concentrés dans la ration a eu un effet négatif. Les modèles développés ont montré l’importance de la gestion de l’alimentation sur la TMG du lait. En plus, ils ont démontré l’intérêt de considérer la DACA dans la formulation de rations chez la vache laitière. Dans une deuxième étude, la même base des données a été utilisée pour identifier les facteurs nutritionnels qui peuvent faire varier la teneur en urée du lait. Contrairement à ce qui est mentionné dans la littérature, tant des corrélations positives et que négatives entre les teneurs en urée du lait et en protéines des rations à l’intérieur des troupeaux sur une période de 36 mois ont été obtenues. Pour mieux comprendre ces relations, les résultats de performances et d’alimentation de 100 troupeaux avec des corrélations positives (r > 0,69) et de 100 troupeaux avec des corrélations négatives (r < -0,44) entre la teneur en urée du lait et en protéine brute de la ration ont été comparés. Les résultats n’ont pas montré de différences entre les deux groupes ni pour la composition de la ration, ni pour l’urée du lait. Ces résultats ne permettent pas d’identifier le meilleur contexte pour l’utilisation de la teneur en urée du lait comme un outil de gestion de l’alimentation. Ces observations soulèvent des questions sur la validité de l’utilisation des statistiques d’alimentation provenant de la base de données utilisée pour des évaluations nutritionnelles plus spécifiques. Considérant les résultats du projet précédent, le dernier projet visait à mieux comprendre les caractéristiques des fermes avec différentes efficiences d’utilisation de l’azote en utilisant des données plus fiables. Ainsi, 100 fermes laitières au Québec ont été visitées pour recueillir les données de production, de consommation d’aliments et de gestion de leur troupeau. Ces fermes ont été divisées en quatre groupes par une analyse en grappes selon leur efficience d’utilisation de l’azote. La comparaison entre les groupes a montré que les fermes dans les groupes avec une plus haute efficience d’utilisation d’azote ont une production laitière moyenne par vache plus élevée. Pour les stratégies d’alimentation, les fermes plus efficientes donnent plus d’énergie, mais moins de protéines brutes que les fermes des groupes moins efficients. Les résultats ont également montré l’importance de la prise alimentaire des vaches sur l’efficience d’utilisation de l’azote puisque les fermes des groupes avec la plus grande efficience étaient également celles avec la plus faible prise alimentaire. Aussi, les résultats n’ont pas permis d’établir clairement la relation entre la teneur en urée du lait et l’efficience de l’utilisation de l’azote. En effet, des valeurs différentes pour l’urée du lait étaient obtenues entre le groupe plus efficient et le moins efficient, mais la faible ampleur de variation de l’efficience d’utilisation de l’azote des groupes intermédiaires n’a pas permis d’observer de différences pour l’urée du lait. Finalement, outre une réduction des risques de pollution, les fermes des groupes plus efficaces pour l’utilisation de l’azote étaient également celles avec la marge sur les coûts d’alimentation par les vaches plus élevées. Par conséquent, il y a aussi un intérêt économique à améliorer l’efficience de l’utilisation de l’azote sur les fermes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper uses an aggregate quantity space to decompose the temporal changes in nitrogen use efficiency and cumulative exergy use efficiency into changes of Moorsteen–Bjurek (MB) Total Factor Productivity (TFP) changes and changes in the aggregate nitrogen and cumulative exergy contents. Changes in productivity can be broken into technical change and changes in various efficiency measures such as technical efficiency, scale efficiency and residual mix efficiency. Changes in the aggregate nitrogen and cumulative exergy contents can be driven by changes in the quality of inputs and outputs and changes in the mixes of inputs and outputs. Also with cumulative exergy content analysis, changes in the efficiency in input production can increase or decrease the cumulative exergy transformity of agricultural production. The empirical study in 30 member countries of the Organisation for Economic Co-operation Development from 1990 to 2003 yielded some important findings. The production technology progressed but there were reductions in technical efficiency, scale efficiency and residual mix efficiency levels. This result suggests that the production frontier had shifted up but there existed lags in the responses of member countries to the technological change. Given TFP growth, improvements in nutrient use efficiency and cumulative exergy use efficiency were counteracted by reductions in the changes of the aggregate nitrogen contents ratio and aggregate cumulative exergy contents ratio. The empirical results also confirmed that different combinations of inputs and outputs as well as the quality of inputs and outputs could have more influence on the growth of nutrient and cumulative exergy use efficiency than factors that had driven productivity change. Keywords: Nutrient use efficiency; Cumulative exergy use efficiency; Thermodynamic efficiency change; Productivity growth; OECD agriculture; Sustainability

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nitrogen-driven trade-off between nitrogen utilisation efficiency (yield per unit nitrogen uptake) and water use efficiency (yield per unit evapotranspiration) is widespread and results from well established, multiple effects of nitrogen availability on the water, carbon and nitrogen economy of crops. Here we used a crop model (APSIM) to simulate the yield, evapotranspiration, soil evaporation and nitrogen uptake of wheat, and analysed yield responses to water, nitrogen and climate using a framework analogous to the rate-duration model of determinate growth. The relationship between modelled grain yield (Y) and evapotranspiration (ET) was fitted to a linear-plateau function to derive three parameters: maximum yield (Ymax), the ET break-point when yield reaches its maximum (ET#), and the rate of yield response in the linear phase ([Delta]Y/[Delta]ET). Against this framework, we tested the hypothesis that nitrogen deficit reduces maximum yield by reducing both the rate ([Delta]Y/[Delta]ET) and the range of yield response to evapotranspiration, i.e. ET# - Es, where Es is modelled median soil evaporation. Modelled data reproduced the nitrogen-driven trade-off between nitrogen utilisation efficiency and water use efficiency in a transect from Horsham (36°S) to Emerald (23°S) in eastern Australia. Increasing nitrogen supply from 50 to 250 kg N ha-1 reduced yield per unit nitrogen uptake from 29 to 12 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 15 kg grain ha-1 mm-1 at Emerald. The same increment in nitrogen supply reduced yield per unit nitrogen uptake from 30 to 25 kg grain kg-1 N and increased yield per unit evapotranspiration from 6 to 25 kg grain ha-1 mm-1 at Horsham. Maximum yield ranged from 0.9 to 6.4 t ha-1. Consistent with our working hypothesis, reductions in maximum yield with nitrogen deficit were associated with both reduction in the rate of yield response to ET and compression of the range of yield response to ET. Against the notion of managing crops to maximise water use efficiency in low rainfall environments, we emphasise the trade-off between water use efficiency and nitrogen utilisation efficiency, particularly under conditions of high nitrogen-to-grain price ratio. The rate-range framework to characterise the relationship between yield and evapotranspiration is useful to capture this trade-off as the parameters were responsive to both nitrogen supply and climatic factors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the effect of maize residues and rice husk biochar on biomass production, fertiliser nitrogen recovery (FNR) and nitrous oxide (N2O) emissions for three different subtropical cropping soils. Maize residues at two rates (0 and 10 t ha−1) combined with three rates (0, 15 and 30 t ha-1) of rice husk biochar were added to three soil types in a pot trial with maize plants. Soil N2O emissions were monitored with static chambers for 91 days. Isotopic 15N-labelled urea was applied to the treatments without added crop residues to measure the FNR. Crop residue incorporation significantly reduced N uptake in all treatments but did not affect overall FNR. Rice husk biochar amendment had no effect on plant growth and N uptake but significantly reduced N2O and carbon dioxide (CO2) emissions in two of the three soils. The incorporation of crop residues had a contrasting effect on soil N2O emissions depending on the mineral N status of the soil. The study shows that effects of crop residues depend on soil properties at the time of application. Adding crop residues with a high C/N ratio to soil can immobilise N in the soil profile and hence reduce N uptake and/or total biomass production. Crop residue incorporation can either stimulate or reduce N2O emissions depending on the mineral N content of the soil. Crop residues pyrolysed to biochar can potentially stabilise native soil C (negative priming) and reduce N2O emissions from cropping soils thus providing climate change mitigation potential beyond the biochar C storage in soils. Incorporation of crop residues as an approach to recycle organic materials and reduce synthetic N fertiliser use in agricultural production requires a thorough evaluation, both in terms of biomass production and greenhouse gas emissions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nitrogen (N) is one of the main inputs in cereal cultivation and as more than half of the arable land in Finland is used for cereal production, N has contributed substantially to agricultural pollution through fertilizer leaching and runoff. Based on this global phenomenon, the European Community has launched several directives to reduce agricultural emissions to the environment. Trough such measures, and by using economic incentives, it is expected that northern European agricultural practices will, in the future, include reduced N fertilizer application rates. Reduced use of N fertilizer is likely to decrease both production costs and pollution, but could also result in reduced yields and quality if crops experience temporary N deficiency. Therefore, more efficient N use in cereal production, to minimize pollution risks and maximize farmer income, represents a current challenge for agronomic research in the northern growing areas. The main objective of this study was to determine the differences in nitrogen use efficiency (NUE) among spring cereals grown in Finland. Additional aims were to characterize the multiple roles of NUE by analysing the extent of variation in NUE and its component traits among different cultivars, and to understand how other physiological traits, especially radiation use efficiency (RUE) and light interception, affect and interact with the main components of NUE and contribute to differences among cultivars. This study included cultivars of barley (Hordeum vulgare L.), oat (Avena sativa L.) and wheat (Triticum aestivum L.). Field experiments were conducted between 2001 and 2004 at Jokioinen, in Finland. To determine differences in NUE among cultivars and gauge the achievements of plant breeding in NUE, 17-18 cultivars of each of the three cereal species released between 1909 and 2002 were studied. Responses to nitrogen of landraces, old cultivars and modern cultivars of each cereal species were evaluated under two N regimes (0 and 90 kg N ha-1). Results of the study revealed that modern wheat, oat and barley cultivars had similar NUE values under Finnish growing conditions and only results from a wider range of cultivars indicated that wheat cultivars could have lower NUE than the other species. There was a clear relationship between nitrogen uptake efficiency (UPE) and NUE in all species whereas nitrogen utilization efficiency (UTE) had a strong positive relationship with NUE only for oat. UTE was clearly lower in wheat than in other species. Other traits related to N translocation indicated that wheat also had a lower harvest index, nitrogen harvest index and nitrogen remobilisation efficiency and therefore its N translocation efficiency was confirmed to be very low. On the basis of these results there appears to be potential and also a need for improvement in NUE. These results may help understand the underlying physiological differences in NUE and could help to identify alternative production options, such as the different roles that species can play in crop rotations designed to meet the demands of modern agricultural practices.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To break the yield ceiling of rice production, a super rice project was developed in 1996 to breed rice varieties with super high yield. A two-year experiment was conducted to evaluate yield and nitrogen (N)-use response of super rice to different planting methods in the single cropping season. A total of 17 rice varieties, including 13 super rice and four non-super checks (CK), were grown under three N levels [0 (N0), 150 (N150), and 225 (N225) kg ha−1] and two planting methods [transplanting (TP) and direct-seeding in wet conditions (WDS)]. Grain yield under WDS (7.69 t ha−1) was generally lower than TP (8.58 t ha−1). However, grain yield under different planting methods was affected by N rates as well as variety groups. In both years, there was no difference in grain yield between super and CK varieties at N150, irrespective of planting methods. However, grain yield difference was dramatic in japonica groups at N225, that is, there was an 11.3% and 14.1% average increase in super rice than in CK varieties in WDS and TP, respectively. This suggests that high N input contributes to narrowing the yield gap in super rice varieties, which also indicates that super rice was bred for high fertility conditions. In the japonica group, more N was accumulated in super rice than in CK at N225, but no difference was found between super and CK varieties at N0 and N150. Similar results were also found for N agronomic efficiency. The results suggest that super rice varieties have an advantage for N-use efficiency when high N is applied. The response of super rice was greater under TP than under WDS. The results suggest that the need to further improve agronomic and other management practices to achieve high yield and N-use efficiency for super rice varieties in WDS.