999 resultados para Nitrogen Doping


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nitrogen modified graphdiyne is investigated concerning its performance for hydrogen purification from CH4 and CO by density functional theory with dispersion correction and transition state theory. After nitrogen doping, the porous N-graphdiyne nano-mesh shows a reduced H2 diffusion barrier and increased CH4/CO diffusion barriers, hence leading to an enhanced hydrogen purification capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a one-pot hydrothermal synthesis of nitrogen doped reduced graphene oxide (N-rGO) and Ag nanoparticle decorated N-rGO hybrid nanostructures from graphene oxide (GO), metal ions and hexamethylenetetramine (HMT). HMT not only reduces GO and metal ions simultaneously but also acts as the source for the nitrogen (N) dopant. We show that the N-rGO can be used as a metal-free surface enhanced Raman spectroscopy (SERS) substrate, while the Ag nano-particles decorated N-rGO can be used as an effective SERS substrate as well as a template for decorating various other nanostructures on N-rGO.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen-doped beta-Ga2O3 nanowires (GaO NWs) were prepared by annealing the as-grown nanowires in an ammonia atmosphere. The optical properties of the nitrogen-doped GaO NWs were studied by measurements of the photoluminescence and phosphorescence decay at the temperature range between 10 and 300 K. The experimental results revealed that nitrogen doping in GaO NWs induced a novel intensive red-light emission around 1.67 eV, with a characteristic decay time around 136 mus at 77 K, much shorter than that of the blue emission (a decay time of 457 mus). The time decay and temperature-dependent luminescence spectra were calculated theoretically based on a donor-acceptor pair model, which is in excellent agreement with the experimental data. This result suggests that the observed novel red-light emission originates from the recombination of an electron trapped on a donor due to oxygen vacancies and a hole trapped on an acceptor due to nitrogen doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new method for large-scale production of GaMnN nanowires, by annealing manganese-gallium oxide nanowires in flowing ammonia at high temperature. Microstructure analysis indicates that the GaMnN nanowires have wurtzite GaN structure without Mn precipitates or Mn-related second phases. Magnetism evolution due to nitrogen doping in manganese-gallium oxide nanowires was evaluated by magnetic measurements. Magnetic measurement reveals that the magnetization increases with the increase of nitrogen concentration. Ferromagnetic ordering exists in the GaMnN nanowires, whose Curie temperature is above room temperature. Luminescence evolution was investigated by the cathodoluminesence measurement for a single nanowire and photoluminescence measurement in a temperature range between 10 and 300 K. Experimental results indicate that optical properties can be modulated by nitrogen doping in manganese-gallium oxide nanowires. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the transport properties (IxV curves and zero bias transmittance) of pristine graphene nanoribbons (GNRs) as well as doped with boron and nitrogen using an approach that combines nonequilibrium Green`s functions and density functional theory (DFT) [NEGF-DFT]. Even for a pristine nanoribbon we verify a spin-filter effect under finite bias voltage when the leads have an antiparallel magnetization. The presence of the impurities at the edges of monohydrogenated zigzag GNRs changes dramatically the charge transport properties inducing a spin-polarized conductance. The IxV curves for these systems show that depending on the bias voltage the spin polarization can be inverted. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1379-1386, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data covers the following:
X-ray photoelectron spectroscopy (XPS) - to collect surface chemical structure changes (using RMIT instrument);
Scanning electron microscopy (SEM) - to collect surface physical structure changes;
Atomic force microscopy (AFM) - to collect surface morphology changes;
Internal/External quantum efficiency (IQE/EQE) – to collect DSSC (Dye Sensitised Solar Cells) efficiency data;
Discharge/Charge capacity - to collect battery efficiency data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molybdenum disulfide (MoS2) nanosheets have unique physical and chemical properties, which make it a perfect candidate for next generation electronic and energy storage applications. Herein, we show the successful synthesis of nitrogen-doped MoS2 nanosheets by a simple, effective and large-scale approach. MoS2 nanosheets synthesised by this method show a porous structure formed by curled and overlapped nanosheets with well-defined edges. Analysis of the nanosheets shows that they have an enlarged interlayer distance and high specific surface area. X-ray photoelectron spectroscopy analysis shows the nanosheets have Mo-N bond indicating successful nitrogen doping. The nitrogen content of the product can be modulated by adjusting the ratio of starting materials easily within the range from ca. 5.8 to 7.6 at%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the synthesis and characterization of colored ZnO-based powders via solution combustion reaction of urea and zinc nitrate hexahydrate in varying molar ratios between 1:1 and 10:1. Among other techniques, we employ X-ray diffraction, nuclear magnetic resonance, and Raman spectroscopy to characterize the products. Within a narrow range of reactant ratios, we reproducibly find an unidentified, crystalline precursor phase related to isocyanuric acid next to ZnO. Finally, we complement our investigations by performing Prompt Gamma Activation Analysis (PGAA) on selected products in order to directly determine elemental bulk compositions and compare these with X-ray photoelectron spectroscopy (XPS) measurements. Our data show traces of nitrogen mainly on the surface of the particles, and thus we question the solution combustion method as a reliable synthesis toward N-doped ZnO. Furthermore, we exclude nitrogen as being responsible for the appearance of the four controversially discussed Raman bands superimposed onto the spectrum of pure ZnO (at 275, 510, 582, and 643 cm–1) and show that the combination of PGAA and XPS is an excellent and complementary method to obtain information about the distribution of the elements in question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four magnetic carbon nanotube samples (CNTs: undoped, completely N-doped and two selectively N-doped) have been synthesized by chemical vapor deposition. The materials were tested in the catalytic wet peroxide oxidation (CWPO) of highly concentrated 4 nitrophenol solutions (4-NP, 5 g L-1). Relatively mild operating conditions were considered (atmospheric pressure, T = 50 ºC, pH = 3), using a catalyst load of 2.5 g L-1 and the stoichiometric amount of H2O2 needed for the complete mineralization of 4-NP. N doping was identified to influence considerably the CWPO performance of the materials. In particular, undoped CNTs, with a moderate hydrophobicity, favor the controllable and efficient decomposition of H2O2 into highly reactive hydroxyl radicals (HO•), thus showing high catalytic activity for 4-NP degradation. On the other hand, the completely N-doped catalyst, fully hydrophilic, favors a quick decomposition of H2O2 into non-reactive O2 and H2O species. The selectively N-doped amphiphilic catalysts, i.e. hybrid structures containing undoped sections followed by N-doped ones, provided intermediate results, namely: a higher N content favored H2O2 decomposition towards non-reactive H2O and O2 species, whilst a lower N content resulted in the formation of HO•, increasing 4-NP mineralization. Catalyst stability and reusability were also investigated by consecutive CWPO runs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Carbon nanotubes with specific nitrogen doping are proposed for controllable, highly selective, and reversible CO2 capture. Using density functional theory incorporating long-range dispersion corrections, we investigated the adsorption behavior of CO2 on (7,7) single-walled carbon nanotubes (CNTs) with several nitrogen doping configurations and varying charge states. Pyridinic-nitrogen incorporation in CNTs is found to induce an increasing CO2 adsorption strength with electron injecting, leading to a highly selective CO2 adsorption in comparison with N2. This functionality could induce intrinsically reversible CO2 adsorption as capture/release can be controlled by switching the charge carrying state of the system on/off. This phenomenon is verified for a number of different models and theoretical methods, with clear ramifications for the possibility of implementation with a broader class of graphene-based materials. A scheme for the implementation of this remarkable reversible electrocatalytic CO2-capture phenomenon is considered.