916 resultados para Nitro compounds
Resumo:
A detailed polarographic (a.c. and d.c.) and coulometric investigation of nitrobenzene has been made at various pH values in the presence of different concentrations of ethanol. Below pH 4.7, two waves are apparent but above this pH, the second wave does not appear. Coulometric evidence indicates that the first and second waves correspond to the four-and two-electron processes, respectively. The coulometric method was not applicable in sodium hydroxide and sodium acetate solutions. When the diffusion coefficients (from the diaphragm cell) are used in the Ilkovic equation, no reliable conclusions can be reached for the number of electrons involved in the reduction process in alkaline solutions. The a.c. polarographic method gives evidence for the formation of species such as: C6H5NO2H22+, C6H5NO2− and C6H5NO22−. Analysis of d.c. polarographic data by Delahay's treatment of irreversible waves, indicates that the number of electrons involved in the rate-determining step is 2. In sodium hydroxide solutions, however, the first main wave is split indicating more than one rate-determining step. The results presented in this paper indicate that the first wave in the reduction of nitrobenzene is a four-electron process at all pH values. The second wave, which appears below pH 4.7, corresponds to a two-electron process irrespective of wave heights. The difference in the a.c. polarographic behaviour in acid and alkaline solutions has given evidence for the formation of species like C6H5NO2H2, C6H5NO2−, and C6H5NO22.
Resumo:
Using the treatment of Smith et al. charge distributions in and consequently the dipole moments of some aliphatic nitro compounds and oximes have been evaluated. The mesomeric moment derived as a difference between the calculated and the observed values gives a clear picture as to how the positive (+M) and the negative (-M) mesomeric effects operate in such systems.
Resumo:
A mild, environmentally friendly method for reduction of aromatic nitro group to amine is reported, using zinc powder in aqueous solutions of chelating ethers. The donor ether acts as a ligand and also serves as a co-solvent. Water is the proton source. This procedure is also a new method for the activation of zinc for electron transfer reduction of aromatic nitro compounds. The reduction is accomplished in a neutral medium and other reducing groups remained unaffected. The ethers used are dioxolane, 1,4-dioxane, ethoxymethoxyethane, dimethoxymethane, 1,2-dimethoxyethane, and diglyme.
Resumo:
An efficient method for the catalytic reduction of aromatic nitro compounds to the corresponding aromatic amines is reported. In the presence of selenium as a catalyst, the aromatic nitro compounds are quantitively reduced by CO/H2O to form the corresponding amines under atmospheric pressure. The reduction occurs in high selectivity regardless of other reducible functionalities present on the aromatic ring. There exists a phase transfer process of the catalyst selenium in the reaction. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An ethanolic mixture of molybdenurn hexacarbonyl and DBU mediates the reduction of nitroarenes to the corresponding anilines in excellent yields in 15-30 minutes under microwave irradiation.
Resumo:
The Introducti on deals mainly with hi storical studies on aryne chemi stry and ring closure via arynes , hydride replacement from aromatic rings by nucleophi les, c l eavage of anthr aquinones in basic medium and the Leuckart reaction . This work can be divided into two main s ect i ons. Section I is concerned with the investigation of t he reaction of some aromatic ni t ro-compounds with potassamide in l iquid ammonia. 3-Amino-4- nitrobenzophenone was obtained from the reacti on of 4-nitrobenzophenone with t his reagent, toge t her with benzoic acid formed in a competing Haller-Bauer reaction. Nitrobenzene under these conditions gave a complex mixture from which 2-phenylphenol was isolated; a reaction i nvolving benzyne may be i nvo l ved. 4-Nitrodiphenyl sulfone gave 4-aminodiphenyl sulfone and 4-nitroani l ine. 4-Ethoxydiphenyl sulfone and 4-ethoxynitrobenzene were isolated when ethanol was used as a co-solvent in the reaction. Oxidative coupling reactions were observed with nitrotoluenes. 4-Nitrotoluene gave 4,4t-dinitrobibenzyl which i n a pro longed reaction gave 4,4t-dinitros t ilbene . 2-Nitrotoluene gave 2 , 2 t-dinitrobibenzyl, but not the corresponding stilbene derivative even after a longer time . A rather i nteresting result was obtained with 1-nitro-2,4,6- trimethylbenzene which gave a stilbene derivative only. Also the corresponding stilbene was obtained from bis-(4-nitrophenyl)-methane in a rather slow r eaction with this reagent . Section II deals wi th (i) the preparation of 5-chloro- 1-N-methyl aminoanthraquinone and a new synthesis of N-methyl acridones and (ii) treatment of chloro-anthraquinones with fo rmamide and a new synthesis of chloro-anthracenes . 5-Chloro-1 -N-methylaminoanthraqui none was synthesised f rom 1,5-dichloroanthraquinone by treatment with N-methylformamide. Treatment of 5-chloro-1-N-methylaminoanthraquinone with potassamide in liquid ammonia or with potassium t-butoxide i n t-butylbenzene gave N-methylacridone-1-carboxylic acid. This pleasing result, t he outcome of r i ng opening and alter native ring closure, is being extended to related ring systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enzymes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanidewas clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds. © 2015 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT
Resumo:
This paper deals with a study of the photophysical property of poly(ether imine) (PETIM) dendritic macromolecule in the presence of aromatic compounds. The inherent photoluminescence property of the dendrimer undergoes quenching in the presence of guest aromatic nitro-compounds. From life-time measurements study, it is inferred that the lifetimes of luminescent species of the dendrimer are not affected with nitrophenols as guest molecules, whereas nitrobenzenes show a marginal change in the lifetimes of the species. Raman spectral characteristic of the macromolecular host-guest complex is conducted in order to identify conformational change of the dendrimer and a significant change in the stretching frequencies of methylene moieties of the dendrimer is observed for the complex with 1,3,5-trinitrobenzene, when compared to other complexes, free host and guest molecules. The photophysical behavior of electron-rich, aliphatic, neutral dendritic macromolecule in the presence of electron-deficient aromatic molecules is illustrated in the present study. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the treatment of cyclometallated dimer [Pd(dmba)(mu-Cl)](2) (dmba = N,N-dimethylbenzylamine) with AgNO(3) and acetonitrile the result was the monomeric cationic precursor [Pd(dmba)(NCMe)(2)](NO(3)) (NCMe=acetonitrile) (1). Compound 1 reacted with m-nitroaniline (m-NAN) and pirazine (pz), originating [Pd(dmba)(ONO(2))(m-NAN)] (2) and [{Pd(dmba)(ONO(2))}(2)(mu-pz)] center dot H(2)O (3), respectively. These compounds were characterized by elemental analysis, IR and NMR spectroscopy. The IR spectra of (2-3) display typical bands of monodentade O-bonded nitrate groups, whereas the NMR data of 3 are consistent with the presence of bridging pyrazine ligands. The structure of compound 3 was determined by Xray diffraction analysis. This packing consists of a supramolecular chain formed by hydrogen bonding between the water molecule and nitrato ligands of two consecutive [Pd(2)(dmba)(2)(ONO(2))2(mu-pz)] units. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bambusa textilis is widely used in popular medicine to treat all kinds of wound inflammation, chronic fever, pulmonary and infectious diseases. The aim of this study was to compare the chemical composition of the extracts of B. textilis leaves obtained by three different extraction methods: solid/liquid extraction, Soxhlet and Clevenger system using gas chromatography with flame ionization detector (GC-FID) and gas chromatography with mass spectrometry (GC-MS) analyses. The analytical characteristics of the extracts showed some differences and the GC-MS analysis indicated the presence of higher concentrations of nitro compounds and alkalis. © VSP 2005.