993 resultados para Nitride strengthened


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels with different Mn contents were investigated. The experimental steels were designed based on the chemical composition of Eurofer 97 steel but the C content was reduced to an extremely low level. Microstructure observation and hardness tests showed that the steel with low Mn content (0.47 wt.%) could not obtain a full martensitic microstructure due to the inevitable δ-ferrite independent of cooling rate after soaking. This steel showed similar room temperature strength and higher strength at 600 °C, but lower impact toughness, compared with Eurofer 97 steel. Fractography of the Charpy impact specimen revealed that the low room temperature toughness should be related to the Ta-rich inclusions initiating the cleavage fracture. The larger amount of V-rich nitrides and more dissolved Cr in the matrix could be responsible for the strength being similar to Eurofer 97 steel. In the second steel developed from the first steel by increasing the Mn content from 0.47 wt.% to 3.73 wt.%, a microstructure of full martensite could be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Constitutive equations including an Arrhenius term have been applied to analyze the hot deformation behavior of a nitride-strengthened (NS) martensitic heat resistant steel in temperature range of 900–1200 °C and strain rate range of 0.001–10 /s. On the basis of analysis of the deformation data, the stress–strain curves up to the peak were divided into four regions, in sequence, representing four processes, namely hardening, dynamic recovery (DRV), dynamic strain induced transformation (DSIT), and dynamic recrystallization (DRX), according to the inflection points in ∂θ/∂σ∂θ/∂σ and ∂(∂θ/∂σ)/∂σ∂(∂θ/∂σ)/∂σ curves. Some of the inflection points have their own meanings. For examples, the minimum of ∂θ/∂σ∂θ/∂σ locates the start of DRV and the maximum of it indicates the start of DRX. The results also showed that the critical strain of DRX was sensitive to ln(Z) below 40, while the critical stress of DRX was sensitive to it above 40. The final microstructures under different deformation conditions were analyzed in terms of softening processes including DRV, DRX, metadynamic crystallization (MDRX) and DSIT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A constitutive equation was established to describe the deformation behavior of a nitride-strengthened (NS) steel through isothermal compression simulation test. All the parameters in the constitutive equation including the constant and the activation energy were precisely calculated for the NS steel. The result also showed that from the stress-strain curves, there existed two different linear relationships between critical stress and critical strain in the NS steel due to the augmentation of auxiliary softening effect of the dynamic strain-induced transformation. In the calculation of processing maps, with the change of Zener-Hollomon value, three domains of different levels of workability were found, namely excellent workability region with equiaxed-grain microstructure, good workability region with “stripe” microstructure, and the poor workability region with martensitic-ferritic blend microstructure. With the increase of strain, the poor workability region first expanded, then shrank to barely existing, but appeared again at the strain of 0.6.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitride-strengthened reduced activation ferritic/martensitic (RAFM) steels are developed taking advantage of the high thermal stability of nitrides. In the current study, the microstructure and mechanical properties of a nitride-strengthened RAFM steel with improved composition were investigated. Fully martensitic microstructure with fine nitrides dispersion was achieved in the steel. In all, 1.4 pct Mn is sufficient to suppress delta ferrite and assure the steel of the full martensitic microstructure. Compared to Eurofer97, the steel showed similar strength at room temperature but higher strength at 873 K (600 °C). The steel exhibited very high impact toughness and a low ductile-to-brittle transition temperature (DBTT) of 243 K (–30 °C), which could be further reduced by purification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nitride-strengthened martensitic heat resistant steel is precipitation strengthened only by nitrides. In the present work, the effect of nitride precipitation behavior on the impact toughness of an experimental steel was investigated. Nitrides could hardly be observed when the steel was tempered at 650°C. When the tempering temperature was increased to 700°C and 750°C, a large amount of nitrides were observed in the matrix. It was surprising to reveal that the impact energy of the half-size samples greatly increased from several Joules to nearly a hundred Joules. The ductile-brittle transition temperature (DBTT) was also discovered to decrease from room temperature to −50°C when the tempering temperature was increased from 650°C to 750°C. The nitride precipitation with increasing tempering temperature was revealed to be responsible for the improved impact toughness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitride-strengthened, reduced activation, martensitic steel is anticipated to have higher creep strength because of the remarkable thermal stability of nitrides. Two nitride-strengthened, reduced activation martensitic steels with different carbon contents were prepared to investigate the microstructure and mechanical property changes with decreasing carbon content. It has been found that both steels had the microstructure of full martensite with fine nitrides dispersed homogeneously in the matrix and displayed extremely high strength but poor toughness. Compared with the steel with low carbon content (0.005 pct in wt pct), the steel with high carbon content (0.012 pct in wt pct) had not only the higher strength but also the higher impact toughness and grain coarsening temperature, which was related to the carbon content. On the one hand, carbon reduction led to Ta-rich inclusions; on the other hand, the grain grew larger when normalized at high temperature because of the absence of Ta carbonitrides, which would decrease impact toughness. The complicated Al2O3 inclusions in the two steels have been revealed to be responsible for the initiated cleavage fracture by acting as the critical cracks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a series of tension tests on CFRP bonded steel plate double strap joints. The main aim of this research is to provide detailed understanding of bond characteristics using experimental and numerical analysis of strengthened double strap joints under tension. A parametric study has been performed by numerical modelling with the variables of CFRP bond lengths, adhesive maximum strain and adhesive layer thicknesses. Finally, bond-slip models are proposed for three different types of adhesives within the range of the parametric study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to study the sliding and the vibrating fretting tests mechanism of h-BN micro-particles when used as a lubricating grease-2 additive. Design/methodology/approach: The fretting tests were conducted on steel/steel contacts using both vibrating fretting apparatus and the shaftsleeve slide fitted tester. The wear scars were characterized with profilometry. The tribological properties of grease-2 compounded with h-BN additive were also compared to those obtained for the commercial product Militec-4. Findings: The experiment showed significant differences between the results obtained from the vibrating fretting and the shaft-sleeve sliding fitted tests. Adding h-BN to the lubricant leads to a better performance in the shaft-sleeve slide regime than in the steel/steel vibrating test condition. Originality/value: The results of the experimental studies demonstrate the potential of h-BN as an additive for preventing fretting sliding, and can very useful for further application of compound grease-2 with h-BN additive in industrial equipment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma enhanced chemical vapour deposition silicon nitride thin films are widely used in microelectromechanical system devices as structural materials because the mechanical properties of those films can be tailored by adjusting deposition conditions. However, accurate measurement of the mechanical properties, such as hardness, of films with thicknesses at nanometric scale is challenging. In the present study, the hardness of the silicon nitride films deposited on silicon substrate under different deposit conditions was characterised using nanoindentation and nanoscratch deconvolution methods. The hardness values obtained from the two methods were compared. The effect of substrate on the measured results was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the use of the carbon fibre reinforced polymer(CFRP) composites appears to be an excellent solution for retrofitting and strengthening of concrete and steel structures because of its superior physical and mechanical properties through the integration of other materials. However, the overall functionality and durability under various environmental conditions of the system has not yet been well documented. This paper reviews the environmental durability of CFRP strengthened system that has received only small coverage in previous review articles. Future research topics have also been indentified, such as durability of steel circular hollow section under various environmental conditions subjected to bending. Environment of interests are moisture/solution, alkalinity, creep/relaxation, fatigue, fire, thermal effects (including freeze-thaw), and ultraviolet exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal-free magnetism and half-metallicity recently has been the subject of intense research activity due to its potential in spintronics application. Here we, for the first time, demonstrate via density functional theory that the most recently experimentally realized graphitic carbon nitride (g-C4N3) displays a ferromagnetic ground state. Furthermore, this novel material is predicted to possess an intrinsic half-metallicity never reported to date. Our results highlight a new promising material toward realistic metal-free spintronics application.