29 resultados para Nitazoxanide
Resumo:
SUMMARY The efficacy of nitazoxanide (NTZ) against toxocariasis was investigated in an experimental murine model and results were compared to those obtained using mebendazole. Sixty male BALB/c mice, aged six to eight weeks-old, were divided into groups of 10 each; fifty were orally infected with 300 larvaed eggs of T. canisand grouped as follows, G I: infected untreated mice; G II: infected mice treated with MBZ (15 mg/kg/day) 10 days postinfection (dpi); G III: infected mice treated with NTZ (20 mg/kg/day) 10 dpi; G IV: infected mice treated with MBZ 60 dpi; G V: infected mice treated with NTZ 60 dpi; GVI: control group comprising uninfected mice. Mice were bled via retro-orbital plexus on four occasions between 30 and 120 dpi. Sera were processed using the ELISA technique to detect IgG anti- Toxocaraantibodies. At 120 dpi, mice were sacrificed for larval recovery in the CNS, liver, lungs, kidneys, eyes and carcass. Results showed similar levels of anti- ToxocaraIgG antibodies among mice infected but not submitted to treatment and groups treated with MBZ or NTZ, 10 and 60 dpi. Larval recovery showed similar values in groups treated with NTZ and MBZ 10 dpi. MBZ showed better efficacy 60 dpi, with a 72.6% reduction in the parasite load compared with NTZ, which showed only 46.5% reduction. We conclude that administration of these anthelmintics did not modify the humoral response in experimental infection by T. canis. No parasitological cure was observed with either drug; however, a greater reduction in parasite load was achieved following treatment with MBZ.
Resumo:
A rapid, economical, reproducible, and simple direct spectrophotometric method was developed and validated for the assay of nitazoxanide in pharmaceutical formulations. Nitazoxanide concentration was estimated in water at 345 nm and pH 4.5. The method was suitable and validated for specificity, linearity, precision, and accuracy. There was no interference of the excipients in the determination of the active pharmaceutical ingredient. The proposed method was successfully applied in the determination of nitazoxanide in coated tablets and in powders for oral suspension. This method was compared to a previously developed and validated method for liquid chromatography to the same drug. There was no significative difference between these methods for nitazoxanide quantitation.
Resumo:
The cationic arylimidamide DB750 and the thiazolide nitazoxanide had been shown earlier to be effective against Neospora caninum tachyzoites in vitro with an IC(50) of 160nM and 4.23muM, respectively. In this study, we have investigated the effects of DB750 and nitazoxanide treatments of experimentally infected Balb/c mice, by applying the drugs either through the oral or the intraperitoneal route. In experiment 1, administration of DB750 (2mg/kg/day) and nitazoxanide (150mg/kg/day) started already 3 days prior to experimental infection of mice with 2x10(6) tachyzoites. Following infection, the drugs were further administrated daily for a period of 2 weeks, either orally or intraperitoneally. Intraperitoneal injection of DB750 was well tolerated by the mice, but treatment with nitazoxanide resulted in death of all mice within 3 days. Upon intraperitoneal application of DB750, the cerebral parasite load was significantly reduced compared to all other groups, while oral application of DB750 and nitazoxanide were not as effective, and resulted in significant weight loss. In experiment 2, mice were infected with 2x10(6) tachyzoites and at 2 weeks post-infection, DB750 (2mg/kg/day) was applied by intraperitoneal injections for 14 days. In the DB750-treated group, only 2 out of 12 mice succumbed to infection, compared to 7 out of 12 mice in the placebo-group. DB750 treatment also resulted in significantly reduced cerebral parasite burden, and reduced numbers of viable tachyzoites. Our data suggest that DB750 exerted its activity also after crossing the blood-brain barrier, and that this class of compounds could be promising for the control of N. caninum-associated disease.
Resumo:
Colonisation of the gastrointestinal tract by anaerobic bacteria, protozoa, trematodes, cestodes and/or nematodes and other infectious pathogens, including viruses, represents a major cause of morbidity and mortality in Africa, South America and southeast Asia, as well as other parts of the world. Nitazoxanide is a member of the thiazolide class of drugs with a documented broad spectrum of activity against parasites and anaerobic bacteria. Moreover, the drug has recently been reported to have a profound activity against hepatitis C virus infection. In addition, nitazoxanide exhibits anti-inflammatory properties, which have prompted clinical investigations for its use in Crohn's disease. Studies with nitazoxanide derivatives have determined that there must be significantly different mechanisms of action acting on intracellular versus extracellular pathogens. An impressive number of clinical studies have shown that the drug has an excellent bioavailability in the gastrointestinal tract, is fast acting and highly effective against gastrointestinal bacteria, protozoa and helminthes. A recent Phase II study has demonstrated viral response (hepatitis C) to monotherapy, with a low toxicity and an excellent safety profile over 24 weeks of treatment. Pre-clinical studies have indicated that there is a potential for application of this drug against other diseases, not primarily affecting the liver or the gastrointestinal tract.
Resumo:
Nitazoxanide (NTZ) and several NTZ-derivatives (thiazolides) have been shown to exhibit considerable anti-Neospora caninum tachyzoite activity in vitro. We coupled tizoxanide (TIZ), the deacetylated metabolite, to epoxy-agarose-resin and performed affinity chromatography with N. caninum tachyzoite extracts. Two main protein bands of 52 and 43kDa were isolated. The 52kDa protein was readily recognized by antibodies directed against NcPDI, and mass spectrometry confirmed its identity. Poly-histidine-tagged NcPDI-cDNA was expressed in Escherichia coli and recombinant NcPDI (recNcPDI) was purified by Co2+-affinity chromatography. By applying an enzyme assay based on the measurement of insulin crosslinking activity, recNcPDI exhibited properties reminiscent for PDIs, and its activity was impaired upon the addition of classical PDI inhibitors such as bacitracin (1-2mM), para-chloromercuribenzoic acid (0.1-1mM) and tocinoic acid (0.1-1mM). RecNcPDI-mediated insulin crosslinking was inhibited by NTZ (5-100 microM) in a dose-dependent manner. In addition, the enzymatic activity of recNcPDI was inhibited by those thiazolides that also affected parasite proliferation. Thus, thiazolides readily interfere with NcPDI, and possibly also with PDIs from other microorganisms susceptible to thiazolides.
Resumo:
OBJECTIVES: The characterization of Giardia lamblia WB C6 strains resistant to metronidazole and to the nitro-thiazole nitazoxanide [2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide] as the parent compound of thiazolides, a novel class of anti-infective drugs with a broad spectrum of activities against a wide variety of helminths, protozoa and enteric bacteria. METHODS: Issuing from G. lamblia WB C6, we have generated two strains exhibiting resistance to nitazoxanide (strain C4) and to metronidazole (strain C5) and determined their susceptibilities to both drugs. Using quantitative RT-PCR, we have analysed the expression of genes that are potentially involved in resistance formation, namely genes encoding pyruvate oxidoreductases (POR1 and POR2), nitroreductase (NR), protein disulphide isomerases (PDI2 and PDI4) and variant surface proteins (VSPs; TSA417). We have cloned and expressed PDI2 and PDI4 in Escherichia coli. Using an enzyme assay based on the polymerization of insulin, we have determined the activities of both enzymes in the presence and absence of nitazoxanide. RESULTS: Whereas C4 was cross-resistant to nitazoxanide and to metronidazole, C5 was resistant only to metronidazole. Transcript levels of the potential targets for nitro-drugs POR1, POR2 and NR were only slightly modified, PDI2 transcript levels were increased in both resistant strains and PDI4 levels in C4. This correlated with the findings that the functional activities of recombinant PDI2 and PDI4 were inhibited by nitazoxanide. Moreover, drastic changes were observed in VSP gene expression. CONCLUSIONS: These results suggest that resistance formation in Giardia against nitazoxanide and metronidazole is linked, and possibly mediated by, altered gene expression in drug-resistant strains compared with non-resistant strains of Giardia.
Resumo:
The nitrothiazole analogue nitazoxanide [NTZ; 2-acetolyloxy-N-(5-nitro-2-thiazolyl)benzamide] represents the parent compound of a class of drugs referred to as thiazolides and exhibits a broad spectrum of activities against a wide variety of helminths, protozoa, and enteric bacteria infecting animals and humans. NTZ and other thiazolides are active against a wide range of other intracellular and extracellular protozoan parasites in vitro and in vivo, but their mode of action and respective subcellular target(s) have only recently been investigated. In order to identify potential targets of NTZ and other thiazolides in Giardia lamblia trophozoites, we have developed an affinity chromatography system using the deacetylated derivative of NTZ, tizoxanide (TIZ), as a ligand. Affinity chromatography on TIZ-agarose using cell extracts of G. lamblia trophozoites resulted in the isolation of an approximately 35-kDa polypeptide, which was identified by mass spectrometry as a nitroreductase (NR) homologue (EAA43030.1). NR was overexpressed as a six-histidine-tagged recombinant protein in Escherichia coli, purified, and then characterized using an assay for oxygen-insensitive NRs with dinitrotoluene as a substrate. This demonstrated that the NR was functionally active, and the protein was designated GlNR1. In this assay system, NR activity was severely inhibited by NTZ and other thiazolides, demonstrating that the antigiardial activity of these drugs could be, at least partially, mediated through inhibition of GlNR1.
Resumo:
Diarrhoea caused by Cryptosporidium parvum is a major problem in calves younger than 4 weeks of age. To date only a few compounds have been approved for prophylactic and none for therapeutic use. Nitazoxanide (NTZ) has proven its efficacy in vitro against C. parvum and is approved by FDA for the treatment of human cryptosporidiosis. In a first experimental study, 3 uninfected calves were treated with NTZ and pharmacokinetics was followed through blood samples. Serum samples of uninfected treated calves contained both NTZ metabolites (tizoxanide and tizoxanide glucuronide) and oral administration at 12 h intervals was considered as optimal. Three groups of three calves (1-3 days old) were then each inoculated with 1x10(7) oocysts of C. parvum (cattle genotype): the prophylactic group received 15 mg/kg body weight NTZ twice daily orally in milk from 1 day before to 8 days postinoculation (dpi). The therapeutic group received the same dosage of NTZ for 10 days from the appearance of diarrhoea (between 1 and 5 dpi). The control group was left untreated. All calves were monitored daily from day -1 to 28 dpi and faecal samples were collected for evaluation of consistency and for determination of oocyst numbers per gram (OPG) of faeces. Diarrhoea was observed in all calves within the first week. Neither prophylactic nor therapeutic use of NTZ improved the clinical appearance and calves of the therapeutic showed a longer diarrheic episode (p<0.05) with strong altered faecal consistency compared to the untreated control group. The number of days with oocyst excretion did not differ significantly between the groups. In 5 out of 6 infected and treated calves oocyst excretion stopped only after discontinuation of treatment. In the prophylactic and in the control group mean values of the sum of the daily OPG per calf (8.5x10(6) and 8.0x10(6), respectively) and of the mean daily number of OPG (0.3x10(6) and 0.3x10(6), respectively) were similar, while the therapeutic group showed significantly lower values (1.9x10(6) and 0.06x10(6), respectively, p<0.05). However oocyst determinations in this group may have been altered by the severe diarrhoea, diluting oocyst densities in the analysed faecal samples. In conclusion, these preliminary results about the first prophylactic and therapeutic use of NTZ in calves did not show the expected positive effect on the course of the Cryptosporidium-infection, neither on reducing the clinical severity, nor on oocyst excretion.
Resumo:
OBJECTIVES The protozoan parasite Giardia lamblia causes giardiasis, a persistent diarrhoea. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for the treatment of giardiasis. Nitroreductases may play a role in activating these drugs. G. lamblia contains two nitroreductases, GlNR1 and GlNR2. The aim of this work was to elucidate the role of GlNR2. METHODS Expression of GlNR2 was analysed by reverse transcription PCR. Recombinant GlNR2 was overexpressed in G. lamblia and drug susceptibility was analysed. Recombinant GlNR2 was subjected to functional assays. Escherichia coli expressing full-length or truncated GlNR1 and GlNR2 were grown in the presence of nitro compounds. Using E. coli reporter strains for nitric oxide and DNA damage responses, we analysed whether GlNR1 and GlNR2 elicited the respective responses in the presence, or absence, of the drugs. RESULTS G. lamblia trophozoites overexpressing GlNR2 were less susceptible to both nitro drugs as compared with control trophozoites. GlNR2 was a functional nitroreductase when expressed in E. coli. E. coli expressing GlNR1 was more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions. E. coli expressing GlNR2 was not susceptible to either drug. In reporter strains, GlNR1, but not GlNR2, elicited nitric oxide and DNA repair responses, even in the absence of nitro drugs. CONCLUSIONS These findings suggest that GlNR2 is an active nitroreductase with a mode of action different from that of GlNR1. Thus, susceptibility to nitro drugs may depend not only on activation, but also on inactivation of the drugs by specific nitroreductases.
Resumo:
OBJECTIVES The characterization of differential gene expression in Giardia lamblia WB C6 strain C4 resistant to metronidazole and nitazoxanide using microarray technology and quantitative real-time PCR. METHODS In a previous study, we created and characterized the G. lamblia WB C6 clone C4 resistant to nitazoxanide and metronidazole. In this study, using a microarray-based approach, we have identified open-reading frames (ORFs) that were differentially expressed in C4 when compared with its wild-type WB C6. Using quantitative real-time PCR, we have validated the expression patterns of some of those ORFs, focusing on chaperones such as heat-shock proteins in wild-type and C4 trophozoites. In order to induce an antigenic shift, trophozoites of both strains were subjected to a cycle of en- and excystation. Expression of selected genes and resistance to nitazoxanide and metronidazole were investigated after this cycle. RESULTS Forty of a total of 9115 ORFs were found to be up-regulated and 46 to be down-regulated in C4 when compared with wild-type. After a cycle of en- and excystation, resistance of C4 to nitazoxanide and metronidazole was lost. Resistance formation and en-/excystation were correlated with changes in expression of ORFs encoding for major surface antigens such as the variant surface protein TSA417 or AS7 ('antigenic shift'). Moreover, expression patterns of the cytosolic heat-shock protein HSP70 B2, HSP40, and of the previously identified nitazoxanide-binding proteins nitroreductase and protein disulphide isomerase PDI4 were correlated with resistance and loss of resistance after en-/excystation. C4 trophozoites had a higher thermotolerance level than wild-type trophozoites. After en-/excystation, this tolerance was lost. CONCLUSIONS These results suggest that resistance formation in Giardia to nitazoxanide and metronidazole is correlated with altered expression of genes involved in stress response such as heat-shock proteins.
Resumo:
Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved, effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and cross-resistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.
Resumo:
Treatment for chronic hepatitis C has changed over the past years achieving higher response rates. The combination treatment with pegylated interferon-a and ribavirin is tailored based on the on-treatment virological responses. With this response-guided therapy, the overall sustained virological response rate is about 55%. Many new antivirals are currently under investigation and some will be commercially available in the near future. These include antiviral molecules acting directly against the hepatitis C virus (HCV) replication machinery, such as the inhibitors of the viral protease, and agents binding to host cofactors of the viral replication, thereby inhibiting HCV in an indirect way (such as cyclophilin inhibitors and nitazoxanide). The advent of these drugs will further ameliorate response rates and facilitate the permanent cure of chronic hepatitis C.
Resumo:
Introducción La infección por Clostridium difficile, es una de las causas más frecuentes de diarrea nosocomial con una alta morbimortalidad, con un aumento exponencial en su incidencia, en Estados Unidos se duplicó, de 261 casos x 100.000 en 1993 pasó a 546 x 100.000 en 2003 2, y en Canadá se encontraron datos similares con un aumento de 4.5 veces, en 1991 de 35.6 casos x 100.000 a 156.3 casos por 100.000 en 2004 3 . Se han descrito varios factores asociados Materiales y Métodos Se trata de un estudio descriptivo de tipo serie de casos en el que se evaluaron pacientes con diagnóstico de infección por C. Difficile y los factores asociados en un Hospital Universitario entre febrero de 2010 hasta septiembre de 2011 Resultados Se recolectaron 31 pacientes la edad promedio fue de 58 años con un rango entre 18 y 93 años, de los cuales 19 (61%) fueron mujeres y 12 (39%) hombres. El factor asociado a la infección por C. Difficile más frecuentemente encontrado fue el uso de inhibidores de bomba de protones con 54.84% (n=17) .No se encontraron pacientes VIH positivos o con diagnóstico de enfermedad inflamatoria intestinal. Ningún paciente presentó complicaciones asociadas a la infección ni mortalidad alguna. Conclusión El factor asociado que más se presentó fue el uso de antimicrobianos en los quince dias previos al inicio del cuadro en el 74% de los pacientes lo que coincide con lo presentado en la literatura mundial.
Identification of a host cell target for the thiazolide class of broad-spectrum anti-parasitic drugs
Resumo:
The thiazolide nitazoxanide (NTZ) and some derivatives exhibit considerable in vitro activities against a broad range of parasites, including the apicomplexans Neospora caninum and Toxoplasma gondii tachyzoites. In order to identify potential molecular targets for this compound in both parasites, RM4847 was coupled to epoxy-agarose and affinity chromatography was performed. A protein of approximately 35 kDa was eluted upon RM4847-affinity-chromatography from extracts of N. caninum-infected human foreskin fibroblasts (HFF) and non-infected HFF, but no protein was eluted when affinity chromatography was performed with T. gondii or N. caninum tachyzoite extracts. Mass spectrometry analysis identified the 35 kDa protein as human quinone reductase NQO1 (P15559; QR). Within 8h after infection of HFF with N. caninum tachyzoites, QR transcript expression levels were notably increased, but no such increase was observed upon infection with T. gondii tachyzoites. Treatment of non-infected HFF with RM4847 did also lead to an increase of QR transcript levels. The enzymatic activity of 6-histidine-tagged recombinant QR (recQR) was assayed using menadione as a substrate. The thiazolides NTZ, tizoxanide and RM4847 inhibited recQR activity on menadione in a concentration-dependent manner. Moreover, a small residual reducing activity was observed when these thiazolides were offered as substrates.
Resumo:
OBJECTIVES: The protozoan parasite Giardia lamblia causes the intestinal disease giardiasis, which may lead to acute and chronic diarrhoea in humans and various animal species. For treatment of this disease, several drugs such as the benzimidazole albendazole, the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are currently in use. Previously, a G. lamblia nitroreductase 1 (GlNR1) was identified as a nitazoxanide-binding protein. The aim of the present project was to elucidate the role of this enzyme in the mode of action of the nitro drugs nitazoxanide and metronidazole. METHODS: Recombinant GlNR1 was overexpressed in both G. lamblia and Escherichia coli (strain BL21). The susceptibility of the transfected bacterial and giardial cell lines to nitazoxanide and metronidazole was analysed. RESULTS: G. lamblia trophozoites overexpressing GlNR1 had a higher susceptibility to both nitro drugs. E. coli were fully resistant to nitazoxanide under both aerobic and semi-aerobic growth conditions. When grown semi-aerobically, bacteria overexpressing GlNR1 became susceptible to nitazoxanide. CONCLUSIONS: These findings suggest that GlNR1 activates nitro drugs via reduction yielding a cytotoxic product.