986 resultados para Niobium electrolytic capacitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aluminum solid electrolytic capacitors with polyaniline doped with inorganic and organic acids as counterelectrode were fabricated, their properties were studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The possibility of enhancing the frequency performance of electrochemical capacitors by tailoring the nanostructure of the carbon electrode to increase electrolyte permeability is demonstrated. Highly porous, vertically oriented carbon electrodes which are in direct electrical contact with the metallic current collector are produced via MPECVD growth on metal foils. The resulting structure has a capacitance and frequency performance between that of an electrolytic capacitor and an electrochemical capacitor. Fully packaged devices are produced on Ni and Cu current collectors and performance compared to state-of-the-art electrochemical capacitors and electrolytic capacitors. The extension of capacitive behavior to the AC regime (100 Hz) opens up an avenue for a number of new applications where physical volume of the capacitor may be significantly reduced. © 2014 Pritesh Hiralal et al.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A bluish-black shining free standing polypyrrole film (PPy) of electronic conductivity 130 S cm-1 has been prepared by electrochemical oxidative polymerization of pyrrole on Pt/transparent glass conducting electrode resistance 15 O cm-1, using a room temperature melt as an electrolyte, composed of 1:3 stoichiometric ratio of cetyl pyridinium chloride and anhydrous aluminum chloride at 0.58 V versus Al wire as a reference electrode. The film possessed a charge transfer resistance of 132 O, and showed two absorption peaks at 457 and 1264 nm in the UV-vis–NIR diffused reflectance spectra. The morphology of the film was hexagonal. The potential step technique suggested a layered structure. This thin film can easily be peeled off from the electrode surface after three cycles and can be used for various applications like dissipation of electrostatic charge, battery electrode materials, solid electrolytic capacitor, electrochromic windows and displays, microactuators etc. It was also characterized by IR, thermal and SEM studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Niobium oxides have been pointed as an alternative to tantalum in the production of solid electrolytic capacitors, with advantages regarding the dielectric constant, density and price. In this work, it is intended to create a new family of niobium oxides based capacitors, adapting the technology and production line currently used with tantalum. Despite the known potentialities of niobium oxides, and many types of niobates, in several technological applications, the understanding of these oxide systems is still noticeably insufficient. Hence, a careful bibliographic review is shown, which evidences the complexity of these materials, the difficulty in identifying of their different phases and polymorphs, as well as in the interpretation of their properties. In this context, several fundamental studies on niobium oxides are presented, namely structural, microstructural, optical and electrical characterizations, which allow not only to contribute in an important way for the general knowledge of the physical properties of these materials, but also to advance to a sustained development of the niobium oxides based solid electrolytic capacitors. Several processing parameters were studied, clearing the way towards the creation of a prototype. It was also decided to perform a preliminary study on the synthesis and characterization of other oxide systems based in niobium, namely rare-earth orthoniobates (RENbO4), which interest has been related to their optical properties and protonic conductivity. Hence, single and polycrystalline samples of RENbO4 were synthesized and characterized structural, optical and electrically, leaving open an interesting future work.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage source inverters use large electrolytic capacitors in order to decouple the energy between the utility and the load, keeping the DC link voltage constant. Decreasing the capacitance reduces the distortion in the inverter input current but this also affects the load with low-order harmonics and generate disturbances at the input voltage. This paper applies the P+RES controller to solve the challenge of regulating the output current by means of controlling the magnitude of the current space vector, keeping it constant thus rejecting harmonic disturbances that would otherwise propagate to the load. This work presents a discussion of the switching and control strategy. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrolytic capacitors are extensively used in power converters but they are bulky, unreliable, and have short lifetimes. This paper proposes a new capacitor-free high step-up dc-dc converter design for renewable energy applications such as photovoltaics (PVs) and fuel cells. The primary side of the converter includes three interleaved inductors, three main switches, and an active clamp circuit. As a result, the input current ripple is greatly reduced, eliminating the necessity for an input capacitor. In addition, zero voltage switching (ZVS) is achieved during switching transitions for all active switches, so that switching losses can be greatly reduced. Furthermore, a three-phase modular structure and six pulse rectifiers are employed to reduce the output voltage ripple. Since magnetic energy stored in the leakage inductance is recovered, the reverse-recovery issue of the diodes is effectively solved. The proposed converter is justified by simulation and experimental tests on a 1-kW prototype.