958 resultados para Nicotinic receptor expression during differentiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotinic acetylcholine receptors (nAChR) exert pivotal roles in synaptic transmission, neuroprotection and differentiation. Particularly, homomeric alpha 7 receptors participate in neurite outgrowth, presynaptic control of neurotransmitter release and Ca(2+) influx. However, the study of recombinant alpha 7 nAChRs in transfected cell lines is difficult due to low expression of functional receptor channels. We show that PC12 pheochromocytoma cells induced to differentiation into neurons are an adequate model for studying differential nAChR gene expression and receptor activity. Whole-cell current recording indicated that receptor responses increased during the course of differentiation. Transcription of mRNAs coding for alpha 3, alpha 5, alpha 7, beta 2 and beta 4 subunits was present during the course of differentiation, while mRNAs coding for alpha 2, alpha 4 and beta 3 subunits were not expressed in PC12 cells. alpha 7 subunit expression was highest following 1 day of induction to differentiation. Activity of alpha 7 nAChRs, however, was most elevated on day 2 as revealed by inhibition experiments in the presence of 10 nM methyllycaconitine, rapid current decay and receptor responsiveness to the alpha 7 agonist choline. Increased alpha 7 receptor activity was noted when PC12 were induced to differentiation in the presence of choline, confirming that chronic agonist treatment augments nAChR activity. In summary, PC12 cells are an adequate model to study the role and pharmacological properties of this receptor during neuronal differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphogenesis and cytodifferentiation are distinct processes in tooth development. Cell proliferation predominates in morphogenesis; differentiation involves changes in form and gene expression. The cytoskeleton is essential for both processes, being regulated by Rho GTPases. The aim of this study was to verify the expression, distribution, and role of Rho GTPases in ameloblasts and odontoblasts during tooth development in correlation with actin and tubulin arrangements and amelogenin and dentin sialophosphoprotein (DSPP) expression. RhoA, Rac1, and Cdc42 were strongly expressed during morphogenesis; during cytodifferentiation, RhoA was present in ameloblasts and odontoblasts, Rac1 and its effector Pak3 were observed in ameloblasts; and Cdc42 was present in all cells of the tooth germ and mesenchyme. The expression of RhoA mRNA and its effectors RockI and RockII, Rac1 and Pak3, as analyzed by real-time polymerase chain reaction, increased after ameloblast and odontoblast differentiation, according to the mRNA expression of amelogenin and DSPP. The inhibition of all Rho GTPases by Clostridium difficile toxin A completely abolished amelogenin and DSPP expression in tooth germs cultured in anterior eye chamber, whereas the specific inhibition of the Rocks showed only a partial effect. Thus, both GTPases are important during tooth morphogenesis. During cytodifferentiation, Rho proteins are essential for the complete differentiation of ameloblasts and odontoblasts by regulating the expression of amelogenin and DSPP. RhoA and its effector RockI contribute to this role. A specific function for Rac1 in ameloblasts remains to be elucidated; its punctate distribution indicates its possible role in exocytosis/endocytosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enamel-producing cells (ameloblasts) pass through several phenotypic and functional stages during enamel formation. In the transition between secretory and maturation stages, about one quarter of the ameloblasts suddenly undergo apoptosis. We have studied this phenomenon using the continuously erupting rat incisor model. A special feature of this model is that all stages of ameloblast differentiation are presented within a single longitudinal section of the developing tooth. This permits investigation of the temporal sequence of gene and growth factor receptor expression during ameloblast differentiation and apoptosis. We describe the light and electron microscopic morphology of ameloblast apoptosis and the pattern of insulin-like growth factor-1 receptor expression by ameloblasts in the continuously erupting rat incisor model. In the developing rat incisor, ameloblast apoptosis is associated with downregulated expression of the insulin-like growth factor-1 receptor. These data are consistent with the hypothesis that ameloblasts are hard wired for apoptosis and that insulin-like growth factor-1 receptor expression is required to block the default apoptotic pathway. Possible mechanisms of insulin-like growth factor-1 inhibition of ameloblast apoptosis are presented. The rat incisor model may be useful in studies of physiological apoptosis as it presents apoptosis in a predictable pattern in adult tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although ATP and P2X receptor activity have been lately associated with epilepsy, little is known regarding their exact roles in epileptogenesis. Temporal-lobe epilepsy (TLE) in rat was induced by pilocarpine in order to study changes of hippocampal P2X(2), P2X(4) and P2X(7) receptor expression during acute, latent or chronic phases of epilepsy. During acute and chronic phases increased P2X(7) receptor expression was principally observed in glial cells and glutamatergic nerve terminals, suggesting participation of this receptor in the activation of inflammatory and excitotoxic processes during epileptogenesis. No significant alterations of hippocampal P2X(2) and P2X(4) receptor expression was noted during the acute or latent phase when compared to the control group, indicating that these receptors are not directly involved with the initiation of epilepsy. However, the reduction of hippocampal P2X(4) receptor immunostaining in the chronic phase could reflect neuronal toss or decreased GABAergic signaling. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular mechanism of hepatic cell growth and differentiation is ill defined. In the present study, we examined the putative role of tyrosine phosphorylation in normal rat liver development and in an in vitro model, the α-fetoprotein-producing (AFP+) and AFP-nonproducing (AFP−) clones of the McA-RH 7777 rat hepatoma. We demonstrated in vivo and in vitro that the AFP+ phenotype is clearly associated with enhanced tyrosine phosphorylation, as assessed by immunoblotting and flow cytometry. Moreover, immunoprecipitation of proteins with anti-phosphotyrosine antibody showed that normal fetal hepatocytes expressed the same phosphorylation pattern as stable AFP+ clones and likewise for adult hepatocytes and AFP− clones. The tyrosine phosphorylation of several proteins, including the β-subunit of the insulin receptor, insulin receptor substrate-1, p85 regulatory subunit of phosphatidylinositol-3-kinase, and ras-guanosine triphosphatase-activating protein, was observed in AFP+ clones, whereas the same proteins were not phosphorylated in AFP− clones. We also observed that fetal hepatocytes and the AFP+ clones express 4 times more of the insulin receptor β-subunit compared with adult hepatocytes and AFP− clones and, accordingly, that these AFP+ clones were more responsive to exogenous insulin in terms of protein tyrosine phosphorylation. Finally, growth rate in cells of AFP+ clones was higher than that measured in cells of AFP− clones, and inhibition of phosphatidylinositol-3-kinase by LY294002 and Wortmannin blocked insulin- and serum-stimulated DNA synthesis only in cells of AFP+ clones. These studies provide evidences in support of the hypothesis that signaling via insulin prevents hepatocyte differentiation by promoting fetal hepatocyte growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lineage of dendritic cells (DC), and in particular their relationship to monocytes and macrophages, remains obscure. Furthermore, the requirement for the macrophage growth factor CSF-1 during DC homeostasis is unclear. Using a transgenic mouse in which the promoter for the CSF-1R (c-fms) directs the expression of enhanced GFP in cells of the myeloid lineage, we determined that although the c-fms promoter is inactive in DC precursors, it is up-regulated in all DC subsets during differentiation. Furthermore, plasmacytoid DC and all CD11c(high) DC subsets are reduced by 50-70% in CSF-1-deficient osteopetrotic mice, confirming that CSF-1 signaling is required for the optimal differentiation of DC in vivo. These data provide additional evidence that the majority of tissue DC is of myeloid origin during steady state and supports a close relationship between DC and macrophage biology in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A secretory surge of prolactin occurs on the afternoon of oestrous in cycling rats. Although prolactin is regulated by ovarian steroids, plasma oestradiol and progesterone levels do not vary during oestrous. Because prolactin release is tonically inhibited by hypothalamic dopamine and modulated by dopamine transmission in the preoptic area (POA), the present study aimed to evaluate whether oestrogen receptor (ER)-alpha and progestin receptor (PR) expression in the dopaminergic neurones of arcuate (ARC), periventricular, anteroventral periventricular (AVPe) and ventromedial preoptic (VMPO) nuclei changes during the day of oestrous. Cycling rats were perfused every 2 h from 10-20 h on oestrous. Brain sections were double-labelled to ER alpha or PR and tyrosine hydroxylase (TH). The number of TH-immunoreactive (ir) neurones did not vary significantly in any area evaluated. ER alpha expression in TH-ir neurones increased at 14 and 16 h in the rostral-ARC and dorsomedial-ARC, 14 h in the caudal-ARC and 16 h in the VMPO, whereas it was unaltered in the ventrolateral-ARC, periventricular and AVPe. PR expression in TH-ir neurones of the periventricular and rostral, dorsomedial, ventrolateral and caudal-ARC decreased transitorily during the afternoon, showing the lowest levels between 14 and 16 h; but it did not vary in the AVPe and VMPO. Plasma oestradiol and progesterone concentrations were low and unaltered during oestrous, indicating that the changes in receptors expression were probably not due to variation in ligand levels. Thus, our data suggest that variations in ER alpha and PR expression may promote changes in the activity of medial basal hypothalamus and POA dopaminergic neurones, even under unaltered secretion of ovarian steroids, which could facilitate the occurrence and modulate the magnitude of the prolactin surge on oestrous.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pituitary growth hormone (GH) stimulates postnatal growth and metabolism. The role of CH and its receptor (GHR) during prenatal development, however, is still controversial. As shown by reverse transcription polymerase chain reaction (RT-PCR), bovine in vitro fertilization embryos synthesized the transcript of GHR from Day 2 of embryonic life onwards. Real time RT-PCR revealed that synthesis of GHR mRNA was increased 5.9-fold in 6-day-old embryos compared with 2-day-old embryos. Using in situ hybridization, the mRNA encoding GHR was predominantly localized to the inner cell mass of blastocysts. The GHR protein was first visualized 3 days after fertilization. GH-specific transcripts were first detected in embryos on Day 8 of in vitro culture. As shown by transmission electron microscopy, GH treatment resulted in elimination of glycogen storage in 6- to 8-day-old embryos and an increase in exocytosis of lipid vesicles. These results suggest that a functional GHR able to modulate carbohydrate and lipid metabolism is synthesized during preimplantation development of the bovine embryo and that this GHR may be subject to activation by embryonic GH after Day 8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well established that Notch signaling plays a critical role at multiple stages of T cell development and activation. However, detailed analysis of the cellular and molecular events associated with Notch signaling in T cells is hampered by the lack of reagents that can unambiguously measure cell surface Notch receptor expression. Using novel rat mAbs directed against the extracellular domains of Notch1 and Notch2, we find that Notch1 is already highly expressed on common lymphoid precursors in the bone marrow and remains at high levels during intrathymic maturation of CD4(-)CD8(-) thymocytes. Notch1 is progressively down-regulated at the CD4(+)CD8(+) and mature CD4(+) or CD8(+) thymic stages and is expressed at low levels on peripheral T cells. Immunofluorescence staining of thymus cryosections further revealed a localization of Notch1(+)CD25(-) cells adjacent to the thymus capsule. Notch1 was up-regulated on peripheral T cells following activation in vitro with anti-CD3 mAbs or infection in vivo with lymphocytic chorio-meningitis virus or Leishmania major. In contrast to Notch1, Notch2 was expressed at intermediate levels on common lymphoid precursors and CD117(+) early intrathymic subsets, but disappeared completely at subsequent stages of T cell development. However, transient up-regulation of Notch2 was also observed on peripheral T cells following anti-CD3 stimulation. Collectively our novel mAbs reveal a dynamic regulation of Notch1 and Notch2 surface expression during T cell development and activation. Furthermore they provide an important resource for future analysis of Notch receptors in various tissues including the hematopoietic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed "exhaustion." Expression of inhibitory Receptors (iRs) is often regarded as a hallmark of "exhaustion." Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160, and KLRG1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term ("chronic") antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking up-regulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs) of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The action of the thyroid hormones on responsive cells in the peripheral nervous system requires the presence of nuclear triiodothyronine receptors (NT3R). These nuclear receptors, including both the alpha and beta subtypes of NT3R, were visualized by immunocytochemistry with the specific 2B3 monoclonal antibody. In the dorsal root ganglia (DRG) of rat embryos, NT3R immunoreactivity was first discretely revealed in a few neurons at embryonic day 14 (E14), then strongly expressed by all neurons at E17 and during the first postnatal week; all DRG neurons continued to possess clear NT3R immunostaining, which faded slightly with age. The peripheral glial cells in the DRG displayed a short-lived NT3R immunoreaction, starting at E17 and disappearing from the satellite and Schwann cells by postnatal days 3 and 7 respectively. In the developing sciatic nerve, Schwann cells also exhibited transient NT3R immunoreactivity restricted to a short period ranging from E17 to postnatal day 10; the NT3R immunostaining of the Schwann cells vanished proximodistally along the sciatic nerve, so that the Schwann cells rapidly became free of detectable NT3R immunostaining. However, after the transection or crushing of an adult sciatic nerve, the NT3R immunoreactivity reappeared in the Schwann cells adjacent to the lesion by 2 days, then along the distal segment in which the axons were degenerating, and finally disappeared by 45 days, when the regenerating axons were allowed to re-occupy the distal segment.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate receptors have been often associated with developmental processes. We used immunohistochemical techniques to evaluate the expression of the AMPA-type glutamate receptor (GluR) subunits in the chick optic tectum (TeO). Chick embryos from the 5th through the 20th embryonic day (E5-E20) and one-day-old (P1) chicks were used. The three types of immunoreactivity evaluated (GluR1, GluR2/3, and GluR4) had different temporal and spatial expression patterns in the several layers of the TeO. The GluR1 subunit first appeared as moderate staining on E7 and then increased on E9. The mature GluR1 pattern included intense staining only in layer 5 of the TeO. The GluR2/3 subunits presented low expression on E5, which became intense on E7. The staining for GluR2/3 changed to very intense on E14 in tectal layer 13. Staining of layer 13 neurons is the most prominent feature of GluR immunoreactivity in the adult TeO. The GluR4 subunit generally presented the lowest expression starting on E7, which was similar to the adult pattern. Some instances of transient expression of GluR subunits were observed in specific cell populations from E9 through E20. These results demonstrate a differential expression of the GluR subunits in the embryonic TeO, adding information about their possible functions in the developmental processes of the visual system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changes in vascular endothelial growth factor (VEGF) in pulmonary vessels have been described in congenital diaphragmatic hernia (CDH) and may contribute to the development of pulmonary hypoplasia and hypertension; however, how the expression of VEGF receptors changes during fetal lung development in CDH is not understood. The aim of this study was to compare morphological evolution with expression of VEGF receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1), in pseudoglandular, canalicular, and saccular stages of lung development in normal rat fetuses and in fetuses with CDH. Pregnant rats were divided into four groups (n=20 fetuses each) of four different gestational days (GD) 18.5, 19.5, 20.5, 21.5: external control (EC), exposed to olive oil (OO), exposed to 100 mg nitrofen, by gavage, without CDH (N-), and exposed to nitrofen with CDH (CDH) on GD 9.5 (term=22 days). The morphological variables studied were: body weight (BW), total lung weight (TLW), left lung weight, TLW/BW ratio, total lung volume, and left lung volume. The histometric variables studied were: left lung parenchymal area density and left lung parenchymal volume. VEGFR1 and VEGFR2 expression were determined by Western blotting. The data were analyzed using analysis of variance with the Tukey-Kramer post hoc test. CDH frequency was 37% (80/216). All the morphological and histometric variables were reduced in the N- and CDH groups compared with the controls, and reductions were more pronounced in the CDH group (P<0.05) and more evident on GD 20.5 and GD 21.5. Similar results were observed for VEGFR1 and VEGFR2 expression. We conclude that N- and CDH fetuses showed primary pulmonary hypoplasia, with a decrease in VEGFR1 and VEGFR2 expression.