309 resultados para Nicotiana-benthamiana
Resumo:
A Tobacco mosaic virus (TMV)-derived vector was used to express a native Human papillomavirus type 16 (HPV-16) L1 gene in Nicotiana benthamiana by means of infectious in vitro RNA transcripts inoculated onto N. benthamiana plants. HPV-16 L1 protein expression was quantitated by enzyme-linked immunosorbent assays (ELISA) after concentration of the plant extract. We estimated that the L1 product yield was 20-37 μg/kg of fresh leaf material. The L1 protein in the concentrated extract was antigenically characterised using the neutralising and conformation-specific Mabs H16:V5 and H16:E70, which bound to the plant-produced protein. Particles observed by transmission electron microscopy were mainly capsomers but virus-like particles (VLPs) similar to those produced in other systems were also present. Immunisation of rabbits with the concentrated plant extract induced a weak immune response. This is the first report of the successful expression of an HPV L1 gene in plants using a plant virus vector. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The transient leaf assay in Nicotiana benthamiana is widely used in plant sciences, with one application being the rapid assembly of complex multigene pathways that produce new fatty acid profiles. This rapid and facile assay would be further improved if it were possible to simultaneously overexpress transgenes while accurately silencing endogenes. Here, we report a draft genome resource for N. benthamiana spanning over 75% of the 3.1 Gb haploid genome. This resource revealed a two-member NbFAD2 family, NbFAD2.1 and NbFAD2.2, and quantitative RT-PCR (qRT-PCR) confirmed their expression in leaves. FAD2 activities were silenced using hairpin RNAi as monitored by qRT-PCR and biochemical assays. Silencing of endogenous FAD2 activities was combined with overexpression of transgenes via the use of the alternative viral silencing-suppressor protein, V2, from Tomato yellow leaf curl virus. We show that V2 permits maximal overexpression of transgenes but, crucially, also allows hairpin RNAi to operate unimpeded. To illustrate the efficacy of the V2-based leaf assay system, endogenous lipids were shunted from the desaturation of 18:1 to elongation reactions beginning with 18:1 as substrate. These V2-based leaf assays produced ~50% more elongated fatty acid products than p19-based assays. Analyses of small RNA populations generated from hairpin RNAi against NbFAD2 confirm that the siRNA population is dominated by 21 and 22 nt species derived from the hairpin. Collectively, these new tools expand the range of uses and possibilities for metabolic engineering in transient leaf assays. © 2012 Naim et al.
De Novo Transcriptome Sequence Assembly and Analysis of RNA Silencing Genes of Nicotiana benthamiana
Resumo:
Background: Nicotiana benthamiana has been widely used for transient gene expression assays and as a model plant in the study of plant-microbe interactions, lipid engineering and RNA silencing pathways. Assembling the sequence of its transcriptome provides information that, in conjunction with the genome sequence, will facilitate gaining insight into the plant's capacity for high-level transient transgene expression, generation of mobile gene silencing signals, and hyper-susceptibility to viral infection. Methodology/Results: RNA-seq libraries from 9 different tissues were deep sequenced and assembled, de novo, into a representation of the transcriptome. The assembly, of16GB of sequence, yielded 237,340 contigs, clustering into 119,014 transcripts (unigenes). Between 80 and 85% of reads from all tissues could be mapped back to the full transcriptome. Approximately 63% of the unigenes exhibited a match to the Solgenomics tomato predicted proteins database. Approximately 94% of the Solgenomics N. benthamiana unigene set (16,024 sequences) matched our unigene set (119,014 sequences). Using homology searches we identified 31 homologues that are involved in RNAi-associated pathways in Arabidopsis thaliana, and show that they possess the domains characteristic of these proteins. Of these genes, the RNA dependent RNA polymerase gene, Rdr1, is transcribed but has a 72 nt insertion in exon1 that would cause premature termination of translation. Dicer-like 3 (DCL3) appears to lack both the DEAD helicase motif and second dsRNA binding motif, and DCL2 and AGO4b have unexpectedly high levels of transcription. Conclusions: The assembled and annotated representation of the transcriptome and list of RNAi-associated sequences are accessible at www.benthgenome.com alongside a draft genome assembly. These genomic resources will be very useful for further study of the developmental, metabolic and defense pathways of N. benthamiana and in understanding the mechanisms behind the features which have made it such a well-used model plant. © 2013 Nakasugi et al.
Resumo:
Axillary shoots of Nicotiana benthamiana were regenerated from nodal explants in two weeks using MS media supplemented with the cytokinin, kinetin (0.5 mg/L), and the auxin, indole-3-butyric acid (IBA) (0.1 mg/L). Ninety two percent of shoots were 2.1-20 mm tall, a size ideal for root induction. After transfer to hormone-free MS they readily produced roots within seven days, with phenotypically normal, fully developed plants being obtained within four weeks. Leaf chlorosis due to iron deficiency was observed in plants over time, however, this was overcome by doubling the concentration of inorganic iron. This rapid micro-propagation system is particularly useful for the in vitro mass production of N. benthamiana plants for various biotechnological applications.
Resumo:
Background Nicotiana benthamiana is an allo-tetraploid plant, which can be challenging for de novo transcriptome assemblies due to homeologous and duplicated gene copies. Transcripts generated from such genes can be distinct yet highly similar in sequence, with markedly differing expression levels. This can lead to unassembled, partially assembled or mis-assembled contigs. Due to the different properties of de novo assemblers, no one assembler with any one given parameter space can re-assemble all possible transcripts from a transcriptome. Results In an effort to maximise the diversity and completeness of de novo assembled transcripts, we utilised four de novo transcriptome assemblers, TransAbyss, Trinity, SOAPdenovo-Trans, and Oases, using a range of k-mer sizes and different input RNA-seq read counts. We complemented the parameter space biologically by using RNA from 10 plant tissues. We then combined the output of all assemblies into a large super-set of sequences. Using a method from the EvidentialGene pipeline, the combined assembly was reduced from 9.9 million de novo assembled transcripts to about 235,000 of which about 50,000 were classified as primary. Metrics such as average bit-scores, feature response curves and the ability to distinguish paralogous or homeologous transcripts, indicated that the EvidentialGene processed assembly was of high quality. Of 35 RNA silencing gene transcripts, 34 were identified as assembled to full length, whereas in a previous assembly using only one assembler, 9 of these were partially assembled. Conclusions To achieve a high quality transcriptome, it is advantageous to implement and combine the output from as many different de novo assemblers as possible. We have in essence taking the ‘best’ output from each assembler while minimising sequence redundancy. We have also shown that simultaneous assessment of a variety of metrics, not just focused on contig length, is necessary to gauge the quality of assemblies.
Resumo:
A single lineage of Nicotiana benthamiana is widely used as a model plant1 and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes2,3. These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr14–6. For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species’ natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour.
Resumo:
Dissertação de mest., Engenharia Biológica, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011
Resumo:
O gene Sw-5 do tomateiro confere resistência a várias espécies de tospovírus e codifica uma proteína contendo domínios de ligação a nucleotídeos e repetições ricas em leucina. Tomateiros com Sw-5 exibem reações necróticas nas folhas inoculadas com tospovírus. Estas reações e a estrutura da proteína Sw-5 indicam que a resistência ocorre por meio do reconhecimento do patógeno e desencadeamento da resposta de hipersensibilidade. A capacidade de Sw-5 de conferir resistência a tospovírus em tabaco selvagem (Nicotiana benthamiana Domin.) foi avaliada em plantas transgênicas. Uma construção com a seqüência aberta de leitura de Sw-5 e sua região 3 não-traduzida sob controle do promotor 35S do CaMV foi utilizada para transformação de N. benthamiana via Agrobacterium tumefaciens. Plantas de progênies R1 foram inoculadas com um isolado de tospovírus e avaliadas quanto à ocorrência de reação de hipersensibilidade e resistência à infecção sistêmica. em uma progênie com segregação 3:1 (resistente:suscetível), foi selecionada uma planta homozigota e sua progênie avaliada quanto ao espectro da resistência a tospovírus. Plantas com o transgene exibiram resposta de hipersensibilidade 48 h após a inoculação, sendo resistentes à infecção sistêmica. O fenótipo da resistência foi dependente do isolado viral e um isolado de Tomato chlorotic spot virus (TCSV) causou necrose sistêmica em todas as plantas inoculadas, enquanto que isolados de Groundnut ringspot virus (GRSV) e um isolado relacionado a Chrysanthemum stem necrosis virus (CSNV) ficaram restritos ao sítio de infecção. Comparações do espectro da resistência obtido neste trabalho com aquele observado em outros membros da família Solanaceae indicam que as vias de transdução de sinais e as respostas de defesa ativadas por Sw-5 são conservadas dentro desta família e polimorfismos genéticos nas vias de transdução de sinais ou em componentes das respostas de defesa podem resultar em diferentes níveis de resistência.
Resumo:
Los virus de plantas pueden causar enfermedades severas que conllevan serias pérdidas económicas a nivel mundial. Además, en la naturaleza son comunes las infecciones simultáneas con distintos virus que conducen a la exacerbación de los síntomas de enfermedad, fenómeno al que se conoce como sinergismo viral. Una de las sintomatologías más severas causadas por los virus en plantas susceptibles es la necrosis sistémica (NS), que incluso puede conducir a la muerte del huésped. Este fenotipo ha sido comparado en ocasiones con la respuesta de resistencia de tipo HR, permitiendo establecer una serie de paralelismos entre ambos tipos de respuesta que sugieren que la NS producida en interacciones compatibles sería el resultado de una respuesta hipersensible sistémica (SHR). Sin embargo, los mecanismos moleculares implicados en el desarrollo de la NS, su relación con procesos de defensa antiviral o su relevancia biológica aún no son bien entendidos, al igual que tampoco han sido estudiados los cambios producidos en la planta a escala genómica en infecciones múltiples que muestran sinergismo en patología. En esta tesis doctoral se han empleado distintas aproximaciones de análisis de expresión génica, junto con otras técnicas genéticas y bioquímicas, en el sistema modelo de Nicotiana benthamiana para estudiar la NS producida por la infección sinérgica entre el Virus X de la patata (PVX) y diversos potyvirus. Se han comparado los cambios producidos en el huésped a nivel genómico y fisiológico entre la infección doble con PVX y el Virus Y de la patata (PVY), y las infecciones simples con PVX o PVY. Además, los cambios transcriptómicos y hormonales asociados a la infección con la quimera viral PVX/HC‐Pro, que reproduce los síntomas del sinergismo entre PVX‐potyvirus, se han comparado con aquellos producidos por otros dos tipos de muerte celular, la PCD ligada a una interacción incompatible y la PCD producida por la disfunción del proteasoma. Por último, técnicas de genética reversa han permitido conocer la implicación de factores del huésped, como las oxilipinas, en el desarrollo de la NS asociada al sinergismo entre PVXpotyvirus. Los resultados revelan que, respecto a las infecciones con solo uno de los virus, la infección doble con PVX‐PVY produce en el huésped diferencias cualitativas además de cuantitativas en el perfil transcriptómico relacionado con el metabolismo primario. Otros cambios en la expresión génica, que reflejan la activación de mecanismos de defensa, correlacionan con un fuerte estrés oxidativo en las plantas doblemente infectadas que no se detecta en las infecciones simples. Además, medidas en la acumulación de determinados miRNAs implicados en diversos procesos celulares muestran como la infección doble altera de manera diferencial tanto la acumulación de estos miRNAs como su funcionalidad, lo cual podría estar relacionado con los cambios en el transcriptoma, así como con la sintomatología de la infección. La comparación a nivel transcriptómico y hormonal entre la NS producida por PVX/HC‐Pro y la interacción incompatible del Virus del mosaico del tabaco en plantas que expresan el gen N de resistencia (SHR), muestra que la respuesta en la interacción compatible es similar a la que se produce durante la SHR, si bien se presenta de manera retardada en el tiempo. Sin embargo, los perfiles de expresión de genes de defensa y de respuesta a hormonas, así como la acumulación relativa de ácido salicílico (SA), ácido jasmonico (JA) y ácido abscísico, en la interacción compatible son más semejantes a la respuesta PCD producida por la disfunción del proteasoma que a la interacción incompatible. Estos datos sugieren una contribución de la interferencia sobre la funcionalidad del proteasoma en el incremento de la patogenicidad, observado en el sinergismo PVX‐potyvirus. Por último, los resultados obtenidos al disminuir la expresión de 9‐LOX, α‐DOX1 y COI1, relacionados con la síntesis o con la señalización de oxilipinas, y mediante la aplicación exógena de JA y SA, muestran la implicación del metabolismo de las oxilipinas en el desarrollo de la NS producida por la infección sinérgica entre PVXpotyvirus en N. benthamiana. Además, estos resultados indican que la PCD asociada a esta infección, al igual que ocurre en interacciones incompatibles, no contiene necesariamente la acumulación viral, lo cual indica que necrosis e inhibición de la multiplicación viral son procesos independientes. ABSTRACT Plant viruses cause severe diseases that lead to serious economic losses worldwide. Moreover, simultaneous infections with several viruses are common in nature leading to exacerbation of the disease symptoms. This phenomenon is known as viral synergism. Systemic necrosis (SN) is one of the most severe symptoms caused by plant viruses in susceptible plants, even leading to death of the host. This phenotype has been compared with the hypersensitive response (HR) displayed by resistant plants, and some parallelisms have been found between both responses, which suggest that SN induced by compatible interactions could be the result of a systemic hypersensitive response (SHR). However, the molecular mechanisms involved in the development of SN, its relationship with antiviral defence processes and its biological relevance are still unknown. Furthermore, the changes produced in plants by mixed infections that cause synergistic pathological effects have not been studied in a genome‐wide scale. In this doctoral thesis different approaches have been used to analyse gene expression, together with other genetic and biochemical techniques, in the model plant Nicotiana benthamiana, in order to study the SN produced by the synergistic infection of Potato virus X (PVX) with several potyviruses. Genomic and physiological changes produced in the host by double infection with PVX and Potato virus Y (PVY), and by single infection with PVX or PVY have been compared. In addition, transcriptional and hormonal changes associated with infection by the chimeric virus PVX/HC‐Pro, which produces synergistic symptoms similar to those caused by PVX‐potyvirus, have been compared with those produced by other types of cell death. These types of cell death are: PCD associated with an incompatible interaction, and PCD produced by proteasome disruption. Finally, reverse genetic techniques have revealed the involvement of host factors, such as oxylipins, in the development of SN associated with PVX‐potyvirus synergism. The results revealed that compared with single infections, double infection with PVX‐PVY produced qualitative and quantitative differences in the transcriptome profile, mainly related to primary metabolism. Other changes in gene expression, which reflected the activation of defence mechanisms, correlated with a severe oxidative stress in doubly infected plants that was undetected in single infections. Additionally, accumulation levels of several miRNAs involved in different cellular processes were measured, and the results showed that double infection not only produced the greatest variations in miRNA accumulation levels but also in miRNA functionality. These variations could be related with transcriptomic changes and the symptomatology of the infection. Transcriptome and hormone level comparisons between SN induced by PVX/HCPro and the incompatible interaction produced by Tobacco mosaic virus in plants expressing the N resistance gene (SHR), showed some similarities between both responses, even though the compatible interaction appeared retarded in time. Nevertheless, the expression profiles of both defence‐related genes and hormoneresponsive genes, as well as the relative accumulation of salicylic acid (SA), jasmonic acid (JA) and abscisic acid in the compatible interaction are more similar to the PCD response produced by proteasome disruption. These data suggest that interference with proteasome functionality contributes to the increase in pathogenicity associated with PVX‐potyvirus synergism. Finally, the results obtained by reducing the expression of 9‐LOX, α‐DOX1 and COI1, related with synthesis or signalling of oxylipins, and by applying exogenously JA and SA, revealed that oxylipin metabolism is involved in the development of SN induced by PVX‐potyvirus synergistic infections in N. benthamiana. Moreover, these results also indicated that PVX‐potyvirus associated PCD does not necessarily restrict viral accumulation, as is also the case in incompatible interactions. This indicates that both necrosis and inhibition of viral multiplication are independent processes.
Resumo:
La moléculture végétale est une approche prometteuse pour la production de protéines d’intérêt médical ou industriel. Considérant les variations de rendement possibles dans une plante soumise à différentes conditions culturales, nos objectifs étaient : (i) de cartographier l’accumulation d’un antigène viral d’intérêt clinique dans les feuilles du tabac sauvage Nicotiana benthamiana utilisé comme bio-usine, et (ii) d’évaluer l’impact de la lumière en période de croissance sur le rendement total en antigène. Nous avons étudié les relations entre l’âge foliaire, le régime lumineux, l’expression du transgène et le rendement final en antigène dans les feuilles. Nos données confirment l’influence de l’âge sur les variations de rendement d’une feuille à l’autre, et l’impact positif de l’intensité lumineuse sur le rendement par plante. Elles mettent aussi en relief l’importance des tiges secondaires sur le rendement et le rôle clé de la transcription du transgène sur la teneur en antigène à l’échelle cellulaire.
Resumo:
Cette étude visait à caractériser la croissance, la capacité photosynthétique, la concentration en azote et protéines totales solubles, la production de protéines recombinantes (HA) ainsi que la quantité de lumière interceptée à différents stades de développement de plants de Nicotiana benthamiana afin d’optimiser la production de vaccins. L’évolution des réponses physiologiques étudiées fut similaire chez toutes les feuilles primaires, suggérant que le processus de sénescence s’initie et progresse de façon semblable indépendamment de leur ordre d’initiation. Toutefois, la superposition des patrons temporels de sénescence et de croissance foliaire a mené à un rendement HA maximal se situant invariablement dans la partie médiane du plant lorsqu’exprimé sur une base foliaire. À l’échelle du plant entier, nos résultats suggèrent qu’il est possible d’augmenter la production de vaccins en récoltant les plants à un stade de développement plus tardif, ou en augmentant la densité de culture et en récoltant ces plants plus tôt.
Resumo:
We constructed a novel autonomously replicating gene expression shuttle vector, with the aim of developing a system for transiently expressing proteins at levels useful for commercial production of vaccines and other proteins in plants. The vector, pRIC, is based on the mild strain of the geminivirus Bean yellow dwarf virus (BeYDV-m) and is replicationally released into plant cells from a recombinant Agrobacterium tumefaciens Ti plasmid. pRIC differs from most other geminivirus-based vectors in that the BeYDV replication-associated elements were included in cis rather than from a co-transfected plasmid, while the BeYDV capsid protein (CP) and movement protein (MP) genes were replaced by an antigen encoding transgene expression cassette derived from the non-replicating A. tumefaciens vector, pTRAc. We tested vector efficacy in Nicotiana benthamiana by comparing transient cytoplasmic expression between pRIC and pTRAc constructs encoding either enhanced green fluorescent protein (EGFP) or the subunit vaccine antigens, human papillomavirus subtype 16 (HPV-16) major CP L1 and human immunodeficiency virus subtype C p24 antigen. The pRIC constructs were amplified in planta by up to two orders of magnitude by replication, while 50% more HPV-16 L1 and three- to seven-fold more EGFP and HIV-1 p24 were expressed from pRIC than from pTRAc. Vector replication was shown to be correlated with increased protein expression. We anticipate that this new high-yielding plant expression vector will contribute towards the development of a viable plant production platform for vaccine candidates and other pharmaceuticals. © 2009 Blackwell Publishing Ltd.
Resumo:
In Arabidopsis thaliana (Arabidopsis), DICER-LIKE1 (DCL1) functions together with the double-stranded RNA binding protein (dsRBP), DRB1, to process microRNAs (miRNAs) from their precursor transcripts prior to their transfer to the RNA-induced silencing complex (RISC). miRNA-loaded RISC directs RNA silencing of cognate mRNAs via ARGONAUTE1 (AGO1)-catalyzed cleavage. Short interefering RNAs (siRNAs) are processed from viral-derived or transgene-encoded molecules of doublestranded RNA (dsRNA) by the DCL/dsRBP partnership, DCL4/DRB4, and are also loaded to AGO1-catalyzed RISC for cleavage of complementary mRNAs. Here, we use an artificial miRNA (amiRNA) technology, transiently expressed in Nicotiana benthamiana, to produce a series of amiRNA duplexes with differing intermolecular thermostabilities at the 5′ end of duplex strands. Analyses of amiRNA duplex strand accumulation and target transcript expression revealed that strand selection (amiRNA and amiRNA*) is directed by asymmetric thermostability of the duplex termini. The duplex strand possessing a lower 59 thermostability was preferentially retained by RISC to guide mRNA cleavage of the corresponding target transgene. In addition, analysis of endogenous miRNA duplex strand accumulation in Arabidopsis drb1 and drb2345 mutant plants revealed that DRB1 dictates strand selection, presumably by directional loading of the miRNA duplex onto RISC for passenger strand degradation. Bioinformatic and Northern blot analyses of DCL4/DRB4-dependent small RNAs (miRNAs and siRNAs) revealed that small RNAs produced by this DCL/dsRBP combination do not conform to the same terminal thermostability rules as those governing DCL1/DRB1-processed miRNAs. This suggests that small RNA processing in the DCL1/DRB1-directed miRNA and DCL4/DRB4-directed sRNA biogenesis pathways operates via different mechanisms.
Resumo:
Background We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes. Results We give an example of expression of heme-thiolate P450 to demonstrate effectiveness of this system. We have also designed vectors that take advantage of a dual luciferase assay system to analyse promoter sequences or post-transcriptional regulation of gene expression. We have demonstrated their utility by co-expression of putative transcription factors and the promoter sequence of potential target genes and show how orthologous promoter sequences respond to these genes. Finally, we have constructed a vector that has allowed us to investigate design features of hairpin constructs related to their ability to initiate RNA silencing, and have used these tools to study cis-regulatory effect of intron-containing gene constructs. Conclusion In developing a series of vectors ideally suited to transient expression analysis we have provided a resource that further advances the application of this technology. These minimal vectors are ideally suited to conventional cloning methods and we have used them to demonstrate their flexibility to investigate enzyme activity, transcription regulation and post-transcriptional regulatory processes in transient assays.
Resumo:
Replacement of endogenous genes by homologous recombination is rare in plants; the majority of genetic modifications are the result of transforming DNA molecules undergoing random genomic insertion by way of non-homologous recombination. Factors that affect chromatin remodeling and DNA repair are thought to have the potential to enhance the frequency of homologous recombination in plants. Conventional tools to study the frequencies of genetic recombination often rely on stable transformation-based approaches, with these systems being rarely capable of high-throughput or combinatorial analysis. We developed a series of vectors that use chemiluminescent (LUC and REN) reporter genes to assay the relative frequency of homologous and non-homologous recombination in plants. These transient assay vectors were used to screen 14 candidategenes for their effects on recombination frequencies in Nicotiana benthamiana plants. Over-expression of Arabidopsis genes with sequence similarity to SNM1 from yeast and XRCC3 from humans enhanced the frequency of non-homologous recombination when assayed using two different donor vectors. Transient N. benthamiana leaf systems were also used in an alternative assay for preliminary measurements of homologous recombination frequencies, which were found to be enhanced by over-expression of RAD52, MIM and RAD51 from yeast, as well as CHR24 from Arabidopsis. The findings for the assays described here are in line with previous studies that analyzed recombination frequencies using stable transformation. The assays we report have revealed functions in non-homologous recombination for the Arabidopsis SNM1 and XRCC3 genes, so the suppression of these genes' expression offers a potential means to enhance the gene targeting frequency in plants. Furthermore, our findings also indicate that plant gene targeting frequencies could be enhanced by over-expression of RAD52, MIM, CHR24, and RAD51 genes.