888 resultados para Nickel free P558 stainless steel
Resumo:
Nickel, a component of stainless steels (SS) applied in orthopedic implants may cause allergic processes in human tissues P558 nickel free SS was studied to verify its viability as a substitute for stainless steel containing nickel Its performance is compared to ISO 5832-9 and F138 most used nowadays grades in implants fabrications, in minimum essential medium. MEM, at 37 degrees C. Potentiodynamic polarization curves, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and ""in vitro"" cytotoxicity were used as techniques. From the electrochemical point of view P558 SS is comparable to ISO 5832-9 SS in MEM It remains passivated until the transpassivation potential, above which generalized corrosion occurs F138 presents pitting corrosion at 370 mV/SCE. The cytotoxicity results showed that P558. ISO 5832-9 and F138 do not present cytotoxic character Therefore, these results suggest that P558 SS can be applied in orthopedic implants (C) 2010 Elsevier BV All rights reserved
Resumo:
Aim the aim of this study was to evaluate the efficacy of ultrasound in cleaning the surface of stainless steel and Ni-Ti endodontic instruments.Methodology Twenty nickel-titanium instruments (10 Quantec files and 10 Nitiflex) and 20 stainless steel K-files (10 Maillefer-Dentsply and 10 Moyco Union Broach) were removed from their original packages and evaluated using a scanning electron microscope. Scores were given for the presence of residues on the surface or the instruments. The instruments were then cleaned in an ultrasonic bath containing only distilled water or detergent solution for 15 min, and re-evaluated, using scanning electron microscopy.Results Before cleaning, a greater amount of metallic debris was observed on the nickel-titanium Quantec instruments (P < 0.05), when compared to those made of stainless steel. Statistical analysis showed that the use of ultrasound was effective for cleaning the instruments, regardless of the irrigating solution or the instruments type (P < 0.05).Conclusions the use of ultrasound proved to be an efficient method for the removal of metallic particles from the surface of stainless steel and Ni-Ti endodontic instruments.
Resumo:
The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainless steel. Chromium nitride precipitation occurred in austenite, which had a high nitrogen supersaturation. Some peculiar aspects were observed in this austenite during its phase transformations. Chromium nitride precipitation occurred discontinuously in a lamellar morphology, such as pearlite in carbon steels. This kind of precipitation is not an ordinary observation in duplex stainless steels and the high levels of nitrogen in austenite can induce this type of precipitation, which has not been previously reported in duplex stainless steels. After chromium nitride precipitation in austenite, it was also observed sigma phase formation near the cells or colonies of discontinuously precipitated chromium nitride. Sigma phase formation was made possible by the depletion of nitrogen in those regions. Time-temperature-transformation (precipitation) diagrams were determined.
Resumo:
Fifty-four extracted human mandibular molars were embedded and sectioned at two levels. The reassembled mesial root canals were prepared with stainless-steel hand K-files (Flexofiles) and either Nitiflex or Mity nickel-titanium hand K-files using a push-pull anticurvature filing technique. Each of the three experimental groups contained 36 mesial canals randomly distributed. Superimposed pre- and postinstrumentation cross-sectional root images were magnified using a stereomicroscope and transferred to a computer for measurement and statistical analysis. The direction and extent of canal center movement were evaluated. At the apical level, the groups produced no significant difference of direction of canal center movement. In cervical sections, all groups tended to move in a distolingual direction. The three groups, however, produced no significant difference in the cervical sections in the extent of canal center movement. In apical sections, Nitiflex produced the least canal center movement. Copyright © 1999 by The American Association of Endodontists.
Resumo:
En este trabajo se presentan los diagramas tensióndeformación de un nuevo acero inoxidable con bajo contenido en níquel, un inoxidable convencional AISI 304 y un acero al carbono de uso común en estructuras de hormigón armado. Dicha ductilidad se ha estudiado determinando la tensión máxima (fmax), la tensión en el límite elástico (fy) y la deformación bajo carga máxima (εmax). Los tres materiales se han evaluado utilizando criterios aceptados internacionalmente, como son el índice p (capacidad de rotación plástica), el índice A* (área plástica de endurecimiento) y el índice de tenacidad Id (energía total absorbida en el punto de alargamiento bajo carga máxima), los resultados obtenidos se han comparado con los aceros convencionales de armaduras 500SD, 500N y 500H (EC-2).
Resumo:
Several studies have shown that austenitic stainless steels are suitable for use in the final phases of orthodontic treatments, such as finishing and retention. These steels demonstrate appropriate mechanical properties, such as high ultimate tensile strength and good corrosion resistance. A new class of materials, the austenic-ferritic stainless steels, is substituting for austenitic stainless steels in several industrial applications where these properties are necessary. This work supports the hypothesis that orthodontic wires of austenic-ferritic stainless steels can replace austenitic stainless steels. The advantages are cost reduction and decrease of the nickel hypersensitivity effect in patients undergoing orthodontic treatments. The object of this study was to evaluate wires of austenitic-ferritic stainless steel SEW 410 Nr. 14517 (Cr26Ni6Mo3Cu3) produced by cold working through rolling and drawing processes. Tests were performed to evaluate the ultimate tensile strength, hardness, ductility, and formability. In accordance with technical standards the wires exhibited ultimate tensile strength and ductility suitable for orthodontic clinical applications. These austenitie-ferritic wires can be an alternative to substitute the common commercial wires of austenic stainless steels with the advantage of decreasing the nickel content.
Resumo:
Listeria monocytogenes is of particular concern for the food industry due to its psychrotolerant and ubiquitous nature. In this work, the ability of L monocytogenes culturable cells to adhere to stainless steel coupons was studied in co-culture with the bacteriocin-producing food isolate Lactobacillus sakei 1 as well as in the presence of the cell-free neutralized supernatant of L sakei 1 (CFSN-S1) containing sakacin 1. Results were compared with counts obtained using a non bacteriocin-producing strain (L sakei ATCC 15521) and its bacteriocin free supernatant (CFSN-SA). Culturable adherent L monocytogenes and lactobacilli cells were enumerated respectively on PALCAM and MRS agars at 3-h intervals for up to 12 h and after 24 and 48 h of incubation. Bacteriocin activity was evaluated by critical dilution method. After 6 h of incubation, the number of adhered L monocytogenes cells in pure culture increased from 3.8 to 5.3 log CFU/cm(2) (48h). Co-culture with L sakei 1 decreased the number of adhered L monocytogenes cells (P < 0.001) during all sampling times with counts lower than 3.0 log CFU/cm(2). The CFNS-S1 also led to a significant and similar reduction in culturable adhered L. monocytogenes counts for up to 24 h of incubation, however after 48 h of incubation, re-growth of L monocytogenes number of adhered cells was observed, likely due to lack of competition for nutrients. L sakei ATCC 15521 or its supernatant (CFNS-SA) did not reduce the number of adhered L monocytogenes cells on stainless steel surface and from 6 h of incubation, listerial counts were between 4.3 and 4.5 log CFU/cm(2). These results indicate that L sakei 1 and its bacteriocin sakacin 1 may be useful to inhibit early stages of L monocytogenes adherence to abiotic surface. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
Co-deposition of nickel and cobalt was carried out on austenitic stainless steel (AISI 304) substrates by imposing a square waveform current in the cathodic region. The innovative procedure applied in this work allows creating a stable, fully developed, and open porous three-dimensional (3D) dendritic structure, which can be used as electrode for redox supercapacitors. This study investigates in detail the influence of the applied current density on the morphology, mass, and chemical composition of the deposited Ni-Co films and the resulting 3D porous network dendritic structure. The morphology and the physicochemical composition were studied by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (W). The electrochemical behavior of the materials was evaluated by cyclic voltammetry (CV). The results highlight the mechanism involved in the coelectrodeposition process and how the lower limit current density tailors the film composition and morphology, as well as its electrochemical activity.
Resumo:
This work describes the construction and application of two amperometric sensors for sensitive UV-filter determination. The sensors were prepared using stainless steel electrodes in which polyaniline (PANI) was electrochemically polymerized in the presence of nickel (NiPcTS) or iron (FePcTS) tetrasulfonated phthalocyanines. The sensor surface characterizations were carried out using atomic force microscopy (AFM). The PANI/NiPcTS sensor was selective for the chemical UV-filter p-aminobenzoic acid (PABA) and the PANI/FePcTS sensor was selective for octyldimethyl-PABA (ODP), both in a mixture of tetrahydrofuran (THF) and 0.1 mol L(-1) H(2)SO(4) at a volume ratio of 30 : 70, and with an applied potential of 0.0 mV vs. Ag vertical bar AgCl. A detailed investigation of the selectivity was carried out for both sensors, in order to determine their responses for ten different UV filters. Finally, each sensor was successfully applied to PABA or ODP quantification in sunscreen formulations and water from swimming pools.
Resumo:
Supermartensitic stainless steels (SMSSs) are a new generation of the classic 13%Cr martensitic steels, lower in carbon and with additional alloying of nickel and molybdenum offering better weldabilty and low temperature toughness. Several works have shown that plasma nitriding and nitrocarburising of stainless steels at low temperatures produces a hard surface layer which results in increased wear resistance. In this work, SMSS samples were plasma nitrided and nitrocarburised at 400, 450 and 500 °C. The plasma treated SMSS samples were characterised by means of optical microscopy, microhardness, X-ray diffraction and dry wear tests. The thickness of the layers produced increases as temperature is raised, for both plasma nitriding and nitrocarburising. X-ray diffraction demonstrates that the chromium nitride content grows with temperature for nitriding and nitrocarburising, which also showed increasing content of iron and chromium carbides with temperature. After plasma treating, it was found that the wear volume decreases for all temperatures and the wear resistance increased as the treatment temperature was raised. The main wear mechanism observed for both treated and untreated samples was grooving abrasion. © 2012 IHTSE Partnership Published by Maney on behalf of the Partnership.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)