924 resultados para Nickel based alloy
Resumo:
The development of new materials has been the hall mark of human civilization. The quest for making new devices and new materials has prompted humanity to pursue new methods and techniques that eventually has given birth to modern science and technology. With the advent of nanoscience and nanotechnology, scientists are trying hard to tailor materials by varying their size and shape rather than playing with the composition of the material. This, along with the discovery of new and sophisticated imaging tools, has led to the discovery of several new classes of materials like (3D) Graphite, (2D) graphene, (1D) carbon nanotubes, (0D) fullerenes etc. Magnetic materials are in the forefront of applications and have beencontributing their share to remove obsolescence and bring in new devices based on magnetism and magnetic materials. They find applications in various devices such as electromagnets, read heads, sensors, antennas, lubricants etc. Ferromagnetic as well as ferrimagnetic materials have been in use in the form of various devices. Among the ferromagnetic materials iron, cobalt and nickel occupy an important position while various ferrites finds applications in devices ranging from magnetic cores to sensors.
Resumo:
The present study was designed to evaluate the metallurgical properties of an experimental, low-cost copper-zinc-aluminum-nickel alloy for dental castings. Some specimens were subjected to heat treatment after induction casting. The extent of corrosion was determined by measuring weight loss of specimens stored in a sodium sulfite solution. In the as-cast specimens, tests demonstrated the presence of three phases: the first consisted of copper-zinc-aluminum, the second was similar but lower in copper and aluminum, and the third consisted of an intermetallic compound of manganese-nickel-phosphorus. After heat treatment, the first phase remained relatively constant, the second was converted to Cu3Al, and the third increased in volume. The weight loss from the as-cast specimens was eight times that of the heat-treated specimens. It was concluded that the heat treatment substantially changed the microstructure and improved the corrosion resistance of the experimental alloy.
Resumo:
An investigation, employing edge-on transmission electron microscopy, of the microstructure of aluminide diffusion coatings on a single crystal y' strengthened nickel base super alloy is reported. An examination has been made of the effect of postcoating exposure at 1100°C on the stability of the coating matrix, a B2 type phase, nominally NiAl. Precipitation in the coating is considered with respect to both decomposition of the B2 matrix to other Ni-Al (plus titanium) phases and the formation of chromium bearing precipitates. A comparison is drawn with behaviour at lower temperatures (850-950°C). © 1995 The Institute of Materials.
Resumo:
Dissertação para obtenção do Grau de Doutor em Nanotecnologia e Nanociência
Resumo:
Allvac 718 Plus and Haynes 282 are relatively new precipitation hardening nickel based superalloys with good high temperature mechanical properties. In addition, the weldability of these superalloys enhances easy fabrication. The combination of high temperature capabilities and superior weldability is unmatched by other precipitation hardening superalloys and linked to the amount of the γ’ hardening precipitates in the materials. Hence, it is these properties that make Allvac 718 Plus and Haynes 282 desirable in the manufacture of hot sections of aero engine components. Studies show that cast products are less weldable than wrought products. Segregation of elements in the cast results in inhomogeneous composition which consequently diminishes weldability. Segregation during solidification of the cast products results in dendritic microstructure with the segregating elements occupying interdendritic regions. These segregating elements are trapped in secondary phases present alongside γ matrix. Studies show that in Allvac 718Plus, the segregating phase is Laves while in Haynes 282 the segregating phase is not yet fully determined. Thus, the present study investigated the effects of homogenization heat treatments in eliminating segregation in cast Allvac 718 Plus and Haynes 282. Paramount to the study was the effect of different homogenization temperatures and dwell time in the removal of the segregating phases. Experimental methods used to both qualify and quantify the segregating phases included SEM, EDX analysis, manual point count and macro Vickers hardness tests. Main results show that there is a reduction in the segregating phases in both materials as homogenization proceeds hence a disappearance of the dendritic structure. In Allvac 718 Plus, plate like structures is observed to be closely associated with the Laves phase at low temperatures and dwell times. In addition, Nb is found to be segregating in the interdendritic areas. The expected trend of increase in Laves as a result of the dissolution of the plate like structures at the initial stage of homogenization is only detectable for few cases. In Haynes 282, white and grey phases are clearly distinguished and Mo is observed to be segregating in interdendritic areas.
Resumo:
Considering the constant technological developments in the aeronautical, space, automotive, shipbuilding, nuclear and petrochemical fields, among others, the use of materials with high strength mechanical capabilities at high temperatures has been increasingly used. Among the materials that meet the mechanical strength and corrosion properties at temperatures around 815 degrees C one can find the nickel base alloy Pyromet 31V (SAE HEV8). This alloy is commonly applied in the manufacturing of high power diesel engines exhaust valves where it is required high resistance to sulphide, corrosion and good resistance to creep. However, due to its high mechanical strength and low thermal conductivity its machinability is made difficult, creating major challenges in the analysis of the best combinations among machining parameters and cutting tools to be used. Its low thermal conductivity results in a concentration of heat at high temperatures in the interfaces of workpiece-tool and tool-chip, consequently accelerating the tools wearing and increasing production costs. This work aimed to study the machinability, using the carbide coated and uncoated tools, of the hot-rolled Pyromet 31V alloy with hardness between 41.5 and 42.5 HRC. The nickel base alloy used consists essentially of the following components: 56.5% Ni, 22.5% Cr, 2,2% Ti, 0,04% C, 1,2% Al, 0.85% Nb and the rest of iron. Through the turning of this alloy we able to analyze the working mechanisms of wear on tools and evaluate the roughness provided on the cutting parameters used. The tests were performed on a CNC lathe machine using the coated carbide tool TNMG 160408-23 Class 1005 (ISO S15) and uncoated tools TNMG 160408-23 Class H13A (ISO S15). Cutting fluid was used so abundantly and cutting speeds were fixed in 75 and 90 m/min. to feed rates that ranged from 0.12, 0.15, 0.18 and 0.21 mm/rev, and cutting depth of 0.8mm. The results of the comparison between uncoated tools and coated ones presented a machined length of just 30% to the first in relation to the performance of the second. The coated tools has obtained its best result for both 75 and 90 m/min. with feed rate of 0.15 mm/rev, unlike the uncoated tool which obtained its better results to 0.12 mm/rev.
Resumo:
In this study a pulsed Nd:YAG laser was used to join Monel 400 thin foil with 100 mu m thickness. Pulse energy was varied from 1.0 to 2.25J at small increments of 0.25J. The macro and microstructures were analyzed by optical microscopy, tensile shear test and microhardness. Sound laser welds without discontinuities were obtained with 1.5 J pulse energy. Results indicate that using a precise control of the pulse energy, and so a control of the bottom foil dilution rate, it is possible to weld Monel 400 thin foil. The process appeared to be very sensitive to the gap between couples.
Resumo:
The structural and magnetic properties of a Fe-based alloy before and after sintering have been analyzed. X ray diffraction measurements confirm the deformation of the magnetic particles in the compacted samples. After sintering, hysteresis energy dissipation, remanence and intrinsic coercivity differ by less than 10% as porosity changes from 15 to 7%.
Resumo:
In this work, carbon supported nickel based nanoparticles were prepared by impregnation method and used as anode electrocatalysts for the glycerol conversion. These metallic powders were mixed with a suitable amount of a Nafion/water solution to make catalytic inks which were then deposited onto the surface of carbon Toray used as a conductive substrate. Long-term electrolyses of glycerol were carried out in alkaline medium by chronoamperometry experiments. Analysis of the oxidation products was performed with ion-exclusion liquid chromatography which separates the analytes by ascending pKa. The spectroscopic measurements have shown that the cobalt content in the anode composition did contribute to the CAC bond cleavage of the initial molecule of glycerol.
Resumo:
Silicon nitride cutting tools have been used successfully for machining hard materials, like: cast irons, nickel based alloys, etc. However these cutting tools with diamond coating present little information on dry turning operations of gray cast iron. In the present work, Si3N4 square inserts was developed, characterized and subsequently coated with diamond for dry machining operations on gray cast iron. All experiments were conducted with replica. It was used a 1500, 3000, 4500 m cutting length, feed rate of 0.33 mm/rev and keeping the depth of cut constant and equal to 1 mm. The results show that wear in the tool tips of the Si3N4 inserts, in all cutting conditions, was caused by both mechanical and chemical processes. To understand the tool wear mechanisms, a morphological analysis of the inserts, after experiments, has been performed by SEM and optical microscopy. Diamond coated PVD inserts showed to be capable to reach large cutting lengths when machining gray cast iron. © (2010) Trans Tech Publications.
Resumo:
Secondary phases such as Laves and carbides are formed during the final solidification stages of nickel based superalloy coatings deposited during the gas tungsten arc welding cold wire process. However, when aged at high temperatures, other phases can precipitate in the microstructure, like the γ″ and δ phases. This work presents a new application and evaluation of artificial intelligent techniques to classify (the background echo and backscattered) ultrasound signals in order to characterize the microstructure of a Ni-based alloy thermally aged at 650 and 950 °C for 10, 100 and 200 h. The background echo and backscattered ultrasound signals were acquired using transducers with frequencies of 4 and 5 MHz. Thus with the use of features extraction techniques, i.e.; detrended fluctuation analysis and the Hurst method, the accuracy and speed in the classification of the secondary phases from ultrasound signals could be studied. The classifiers under study were the recent optimum-path forest (OPF) and the more traditional support vector machines and Bayesian. The experimental results revealed that the OPF classifier was the fastest and most reliable. In addition, the OPF classifier revealed to be a valid and adequate tool for microstructure characterization through ultrasound signals classification due to its speed, sensitivity, accuracy and reliability. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The nickel alloys have a chemical composition with high tenor of alloy elements which are responsible for the material's mechanical and thermal properties, but also are the main causative of problems during the machining, making the process difficult. The objective of this work is the study of the machining by external cylindrical turning of the nickel based alloy Nimonic 80A, seeking the machining optimization of this alloy, seeking the best condition of lubricant fluid use, providing real increases of productivity without the need of investments in new production means. Besides, the results of this work should offer more detailed information regarding the behavior of this alloy in relation to machining by turning. The machining experiences were accomplished in a specimen of the nickel alloy, considering the machining parameters: cutting speed (75 and 90 m/min), cutting depth (0,8 mm) and feed rate (0,15 and 0,18 mm/v). The valuations were accomplished in a CNC lathe and tools with of hard metal inserts. After each stage of the turning the measures of the cutting length were accomplished, of the waste of the tools through a magnifying glass (8x) and the roughness of the specimen evaluated in each phase of the process, with the aid of a portable roughness meter. Through light optical microscopy it was possible to observe the wear of the cutting tools for each appraised condition. The roughness values, Ra and Ry, for the appraised conditions were always superiors to the theoretical values. After analysis of the results it was possible to end that, the best acting for this work strip tested it was obtained for ap=0,8mm: f=0,15mm/rev and VC=75m/min, what resulted in a larger cutting length (1811 m)