864 resultados para Niche migration
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.
Resumo:
Organizations, Inequality, Migration – Changes of the Ethnic Division of Labour in the Swedish Construction Sector During the 1990s the number of migrants from Eastern Europe increased in the Swedish construction sector. This article examines how this change was initiated by changes in the organizational population in the construction sector. The gradual enlargement of the European Union changed the institutional framework for organizations in Sweden. This created increased opportunities for new organizational forms in the construction sector. The specific niche of the new organizations was to recruit and hire out workers from Eastern Europe that were paid lower wages than Swedish workers. The diffusion of this organizational form contributed to a change of norms and beliefs about what was legitimate and illegitimate when employing migrants. This implies that the inequalities that this organizational form introduces have gained increased legitimacy in Sweden. Or in other words, it has become increasingly socially acceptable to pay migrants lower wages than Swedish workers
Resumo:
The whisker follicle has CD34-positive stem cells that migrate from their niche near the bulge along the glassy membrane to the whisker bulb, where they participate in the formation of the whisker shaft. Using immunohistochemistry we found the glycoprotein tenascin-C in the fibrous capsule of mouse whisker follicles, along the glassy membrane and in the trabecular region surrounding keratin-15-negative, CD34-positive stem cells. The related glycoprotein tenascin-W is found in the CD34-positive stem cell niche, in nearby trabeculae, and along the glassy membrane. Tenascin-W is also found in the neural stem cell niche of nearby hair follicles. The formation of stress fibers and focal adhesion complexes in CD34-positive whisker-derived stem cells cultured on fibronectin was inhibited by both tenascin-C and tenascin-W, which is consistent with a role for these glycoproteins in promoting the migration of these cells from the niche to the whisker bulb. Tenascin-C, but not tenascin-W, increased the proliferation of whisker follicle stem cells in vitro. Thus, the CD34-positive whisker follicle stem cell niche contains both tenascin-C and tenascin-W, and these glycoproteins may play a role in directing the migration and proliferation of these stem cells.
Resumo:
Connexin-43 (Cx43), a gap junction protein involved in control of cell proliferation, differentiation and migration, has been suggested to have a role in hematopoiesis. Cx43 is highly expressed in osteoblasts and osteogenic progenitors (OB/P). To elucidate the biologic function of Cx43 in the hematopoietic microenvironment (HM) and its influence in hematopoietic stem cell (HSC) activity, we studied the hematopoietic function in an in vivo model of constitutive deficiency of Cx43 in OB/P. The deficiency of Cx43 in OB/P cells does not impair the steady state hematopoiesis, but disrupts the directional trafficking of HSC/progenitors (Ps) between the bone marrow (BM) and peripheral blood (PB). OB/P Cx43 is a crucial positive regulator of transstromal migration and homing of both HSCs and progenitors in an irradiated microenvironment. However, OB/P Cx43 deficiency in nonmyeloablated animals does not result in a homing defect but induces increased endosteal lodging and decreased mobilization of HSC/Ps associated with proliferation and expansion of Cxcl12-secreting mesenchymal/osteolineage cells in the BM HM in vivo. Cx43 controls the cellular content of the BM osteogenic microenvironment and is required for homing of HSC/Ps in myeloablated animals
Resumo:
Los montes Mediterráneos han experimentado múltiples cambios en las últimas décadas (tanto en clima como en usos), lo que ha conducido a variaciones en la distribución de especies. El aumento previsto de las temperaturas medias junto con la mayor variabilidad intra e inter anual en cuanto a la ocurrencia de eventos extremos o disturbios naturales (como periodos prolongados de sequía, olas de frío o calor, incendios forestales o vendavales) pueden dañar significativamente al regenerado, llevándolo hasta la muerte, y jugando un papel decisivo en la composición de especies y en la dinámica del monte. La amplitud ecológica de muchas especies forestales puede verse afectada, de forma que se esperan cambios en sus nichos actuales de regeneración. Sin embargo, la migración latitudinal de las especies en busca de mejores condiciones, podría ser una explicación demasiado simplista de un proceso mucho más complejo de interacción entre la temperatura y la precipitación, que afectaría a cada especie de un modo distinto. En este sentido tanto la capacidad de adaptación al estrés ambiental de una determinada especie, así como su habilidad para competir por los recursos limitados, podría significar variaciones dentro de una comunidad. Las características fisiológicas y morfológicas propias de cada especie se encuentran fuertemente relacionadas con el lugar donde cada una puede surgir, qué especies pueden convivir y como éstas responden a las condiciones ambientales. En este sentido, el conocimiento sobre las distintas respuestas ecofisiológicas observadas ante cambios ambientales puede ser fundamentales para la predicción de variaciones en la distribución de especies, composición de la comunidad y productividad del monte ante el cambio global. En esta tesis investigamos el grado de tolerancia y sensibilidad que cada una de las tres especies de estudio, coexistentes en el interior peninsular ibérico (Pinus pinea, Quercus ilex y Juniperus oxycedrus), muestra ante los factores abióticos de estrés típicos de la región Mediterránea. Nuestro trabajo se ha basado en la definición del nicho óptimo fisiológico para el regenerado de cada especie a través de la investigación en profundidad del efecto de la sequía, la temperatura y el ambiente lumínico. Para ello, hemos desarrollado un modelo de predicción de la tasa de asimilación de carbono que nos ha permitido identificar las condiciones óptimas ambientales donde el regenerado de cada especie podría establecerse con mayor facilidad. En apoyo a este trabajo y con la idea de estudiar el efecto de la sequía a nivel de toda la planta hemos desarrollado un experimento paralelo en invernadero. Aquí se han aplicado dos regímenes hídricos para estudiar las características fisiológicas y morfológicas de cada especie, sobre todo a nivel de raíz y crecimiento del tallo, y relacionarlas con las diferentes estrategias en el uso del agua de las especies. Por último, hemos estudiado los patrones de aclimatación y desaclimatación al frio de cada especie, identificando los periodos de sensibilidad a heladas, así como cuellos de botella donde la competencia entre especies podría surgir. A pesar de que el pino piñonero ha sido la especie objeto de la gestión de estas masas durante siglos, actualmente se encuentra en la posición más desfavorable para combatir el cambio global, presentado el nicho fisiológico más estrecho de las tres especies. La encina sin embargo, ha resultado ser la especie mejor cualificada para afrontar este cambio, seguida muy de cerca por el enebro. Nuestros resultados sugieren una posible expansión en el rango de distribución de la encina, un aumento en la presencia del enebro y una disminución progresiva del pino piñonero a medio plazo en estas masas. ABSTRACT Mediterranean forests have undergone multiple changes over the last decades (in both climate and land use), which have lead to variations in the distribution of species. The expected increase in mean annual temperature together with the greater inter and intra-annual variability in extreme events and disturbances occurrence (such as prolonged drought periods, cold or heat waves, wildfires or strong winds) can significantly damage natural regeneration, up to causing death, playing a decisive role on species composition and forest dynamics. The ecological amplitude for adaptation of many species can be affected in such a way that changes in the current regeneration niches of many species are expected. However, the forecasted poleward migration of species seeking better conditions could be an oversimplification of what is a more complex phenomenon of interactions among temperature and precipitation, that would affect different species in different ways. In this regard, either the ability to adapt to environmental stresses or to compete for limited resources of a single species in a mixed forest could lead to variations within a community. The ecophysiological and morphological traits specific to each species are strongly related to the place where each species can emerge, which species can coexist, and how they respond to environmental conditions. In this regard, the understanding of the ecophysiological responses observed against changes in environmental conditions can be essential for predicting variations in species distribution, community composition, and forest productivity in the context of global change. In this thesis we investigated the degree of tolerance and sensitivity that each of the three studied species, co-occurring in central of the Iberian Peninsula (Pinus pinea, Quercus ilex and Juniperus oxycedrus), show against the typical abiotic stress factors in the Mediterranean region. Our work is based on the optimal physiological niche for regeneration of each species through in-depth research on the effect of drought, temperature and light environment. For this purpose, we developed a model to predict the carbon assimilation rate which allows us to identify the optimal environmental conditions where regeneration from each species could establish itself more easily. To obtain a better understanding about the effect of low temperature on regeneration, we studied the acclimation and deacclimation patterns to cold of each species, identifying period of frost sensitivity, as well as bottlenecks where competition between species can arise. Finally, to support our results about the effect of water availabilty, we conducted a greenhouse experiment with a view of studying the drought effect at the whole plant level. Here, two watering regimes were applied in order to study the physiological and morphological traits of each species, mainly at the level of the root system and stem growth, and so relate them to the different water use strategies of the species. Despite the fact that stone pine has been the target species for centuries, nowadays this species is in the most unfavorable position to cope with climate change. Holm oak, however, resulted the species that is best adapted to tolerate the predicted changes, followed closely by prickly juniper. Our results suggest a feasible expansion of the distribution range in holm oak, an increase in the prickly juniper presence and a progressive decreasing of stone pine presence in the medium term in these stone pine-holm oak-prickly juniper mixed forests.
Resumo:
The literature on niche separation and coexistence between species is large, but there is widespread variation in behavioural strategy between individuals of the same species that has received much less attention. Understanding what maintains this diversity is important because intraspecific behavioural diversity can affect population dynamics and community interactions. Multiple behavioural strategies can arise either as phenotype-dependent ‘conditional strategies’, where phenotypic variation causes individuals to adopt different strategies for optimizing fitness, or as internally-independent ‘alternative strategies’, where multiple fitness peaks exist for individuals and strategic ‘choice’ remains plastic. Though intraspecific variation in stable phenotypes is known to maintain intraspecific behavioural diversity through conditional strategies, when internal conditions are highly plastic or reversible, it is not clear whether individual behaviours are maintained as conditional strategies, or as alternative strategies of equal fitness. In this study, I combine an observational and experimental approach to identify the likely mechanisms maintaining behavioural diversity between hemoglobin-rich and hemoglobin-poor morphs in a natural population of Daphnia pulicaria. In Round Lake, individuals with low hemoglobin migrate daily from the hypolimnion to the epilimnion, whereas individuals with high hemoglobin remain in the hypolimnion. Using high-resolution depth and time sampling, I discovered behavioural diversity both within and among hemoglobin phenotypes. I tested the role of hemoglobin phenotype in maintaining behavioural diversity using automated migration robots that move individuals across the natural environmental gradients in the lake. By measuring the fitness of each morph undergoing either a natural migration behaviour, or the migration of the opposite morph, I found that the fitness of hemoglobin rich and poor morphs in their natural behaviour does not differ, but that Hb-rich individuals can obtain equal fitness from either behaviour, while Hb-poor morphs suffer substantial drops in survivorship in the alternate migration behaviour. Thus, migration behaviour in this system exists as a conditional strategy for some individuals, and as alternative strategies of equal fitness for others. The results of this study suggest that individual limits in the expression of highly flexible internal conditions can reinforce intraspecific behavioural diversity. Few studies have measured the fitness consequences of switching migration strategies and this study provides a rare example in the field.
Resumo:
The literature on niche separation and coexistence between species is large, but there is widespread variation in behavioural strategy between individuals of the same species that has received much less attention. Understanding what maintains this diversity is important because intraspecific behavioural diversity can affect population dynamics and community interactions. Multiple behavioural strategies can arise either as phenotype-dependent ‘conditional strategies’, where phenotypic variation causes individuals to adopt different strategies for optimizing fitness, or as internally-independent ‘alternative strategies’, where multiple fitness peaks exist for individuals and strategic ‘choice’ remains plastic. Though intraspecific variation in stable phenotypes is known to maintain intraspecific behavioural diversity through conditional strategies, when internal conditions are highly plastic or reversible, it is not clear whether individual behaviours are maintained as conditional strategies, or as alternative strategies of equal fitness. In this study, I combine an observational and experimental approach to identify the likely mechanisms maintaining behavioural diversity between hemoglobin-rich and hemoglobin-poor morphs in a natural population of Daphnia pulicaria. In Round Lake, individuals with low hemoglobin migrate daily from the hypolimnion to the epilimnion, whereas individuals with high hemoglobin remain in the hypolimnion. Using high-resolution depth and time sampling, I discovered behavioural diversity both within and among hemoglobin phenotypes. I tested the role of hemoglobin phenotype in maintaining behavioural diversity using automated migration robots that move individuals across the natural environmental gradients in the lake. By measuring the fitness of each morph undergoing either a natural migration behaviour, or the migration of the opposite morph, I found that the fitness of hemoglobin rich and poor morphs in their natural behaviour does not differ, but that Hb-rich individuals can obtain equal fitness from either behaviour, while Hb-poor morphs suffer substantial drops in survivorship in the alternate migration behaviour. Thus, migration behaviour in this system exists as a conditional strategy for some individuals, and as alternative strategies of equal fitness for others. The results of this study suggest that individual limits in the expression of highly flexible internal conditions can reinforce intraspecific behavioural diversity. Few studies have measured the fitness consequences of switching migration strategies and this study provides a rare example in the field.
Resumo:
Les changements climatiques observés depuis les dernières années semblent avoir un impact sur la distribution et l’abondance des espèces dans plusieurs régions du monde. Cette évolution du climat peut représenter un risque pour la survie de certaines espèces car elle peut impliquer leur migration vers une niche écologique leur étant plus favorable. Ce déplacement est possible si l’espèce possède une forte capacité de dispersion et si le territoire sur lequel elle se déplace n’est pas fragmenté. La modélisation de la distribution d’espèces et de niches écologiques, prenant en compte l’évolution des variables environnementales, permet de connaître la distribution potentielle des espèces à la période actuelle et à des périodes futures selon différents scénarios. Au Québec, ces modélisations de distributions de niches écologiques potentielles constituent une source d’information très utile pour les gestionnaires du territoire, en particulier des aires protégées. Ces données permettent notamment d’anticiper la migration des espèces, influencée par les changements climatiques, afin d’identifier les défis de conservation à venir et de poser une réflexion sur le rôle des aires protégées dans ce contexte. L’objectif général de cet essai vise à étudier la migration potentielle des niches écologiques liée aux changements climatiques sur le territoire des parcs nationaux de Frontenac, du Mont-Mégantic et de leur périphérie. Les changements de répartition et de richesse spécifique de plus de 600 niches écologiques dans ce secteur ont été étudiés ainsi que leur implication en lien avec la fragmentation du territoire. Deux échelles de travail (locale et régionale) ont été considérées et des indices spatiaux de changement de répartition et de diversité des niches écologiques ont été calculés pour ces deux échelles de travail, selon deux modes de dispersion (absence de dispersion et dispersion illimitée) et deux horizons futurs (2050 et 2080). Ces indices ont révélé majoritairement une augmentation des niches écologiques apparaissant sur le territoire et une hausse de la diversité de niches écologiques sur l’ensemble du territoire en cas de dispersion illimitée, phénomène accentué à l’horizon 2080. Par contre, en cas d’absence de dispersion, une disparition importante de niches écologiques ainsi qu’une perte de diversité sont à anticiper sur le territoire, phénomène également accentué à l’horizon 2080. L’étude de la fragmentation révèle un territoire relativement fragmenté par les routes, mais présentant majoritairement une faible résistance au déplacement des espèces, malgré la présence de quelques pôles urbains de moyenne importance. Cette étude se base sur des résultats de modélisation de niches écologiques déjà effectués pour l’ensemble du Québec et pourrait ainsi être appliquée à d’autres territoires. Les résultats montrent d’importants changements à venir et les gestionnaires et scientifiques travaillant sur ce territoire pourront utiliser les résultats obtenus pour réfléchir à la mise en place de mesures adaptées aux déplacements potentiels.
Resumo:
ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.
Resumo:
Paracoccidioidomycosis is a mycotic disease caused by a dimorphic fungus, Paracoccidioides brasiliensis (Pb), that starts with inhalation of the fungus; thus, lung cells such as DC are part of the first line of defense against this microorganism. Migration of DC to the lymph nodes is the first step in initiating T cell responses. The mechanisms involved in resistance to Pb infection are poorly understood, but it is likely that DC play a pivotal role in the induction of effector T cells that control Pb infection. In this study, we showed that after Pb Infection, an important modification of lung DC receptor expression occurred. We observed an increased expression of CCR7 and CD103 on lung DC after infection, as well as MHC-II. After Pb infection, bone marrow-derived DC as well lung DC, migrate to lymph nodes. Migration of lung DC could represent an important mechanism of pathogenesis during PCM infection. In resume our data showed that Pb induced DC migration. Furthermore, we demonstrated that bone marrow-derived DC stimulated by Pb migrate to the lymph nodes and activate a T helper (Th) response. To the best of our knowledge, this is the first reported data showing that Pb induces migration of DC and activate a T helper (Th) response.
Resumo:
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Resumo:
During the early Holocene two main paleoamerican cultures thrived in Brazil: the Tradicao Nordeste in the semi-desertic Sertao and the Tradicao Itaparica in the high plains of the Planalto Central. Here we report on paleodietary singals of a Paleoamerican found in a third Brazilian ecological setting - a riverine shellmound, or sambaqui, located in the Atlantic forest. Most sambaquis are found along the coast. The peoples associated with them subsisted on marine resources. We are reporting a different situation from the oldest recorded riverine sambaqui, called Capelinha. Capelinha is a relatively small sambaqui established along a river 60 km from the Atlantic Ocean coast. It contained the well-preserved remains of a Paleoamerican known as Luzio dated to 9,945 +/- 235 years ago; the oldest sambaqui dweller so far. Luzio's bones were remarkably well preserved and allowed for stable isotopic analysis of diet. Although artifacts found at this riverine site show connections with the Atlantic coast, we show that he represents a population that was dependent on inland resources as opposed to marine coastal resources. After comparing Luzio's paleodietary data with that of other extant and prehistoric groups, we discuss where his group could have come from, if terrestrial diet persisted in riverine sambaquis and how Luzio fits within the discussion of the replacement of paleamerican by amerindian morphology. This study adds to the evidence that shows a greater complexity in the prehistory of the colonization of and the adaptations to the New World.
Resumo:
Deficient wound healing in diabetic patients is very frequent, but the cellular and molecular causes are poorly defined. In this study, we evaluate the hypothesis that high glucose concentrations inhibit cell migration. Using CHO.K1 cells, NIH-3T3 fibroblasts, mouse embryonic fibroblasts and primary skin fibroblasts from control and diabetic rats cultured in 5 mM D-glucose (low glucose, LG), 25 mM D-glucose (high glucose, HG) or 25 mM L-glucose medium (osmotic control - OC), we analyzed the migration speed, protrusion stability, cell polarity, adhesion maturation and the activity of the small Rho GTPase Rac1. We also analyzed the effects of reactive oxygen species by incubating cells with the antioxidant N-Acetyl-Cysteine (NAC). We observed that HG conditions inhibited cell migration when compared to LG or OC. This inhibition resulted from impaired cell polarity, protrusion destabilization and inhibition of adhesion maturation. Conversely, Rac1 activity, which promotes protrusion and blocks adhesion maturation, was increased in HG conditions, thus providing a mechanistic basis for the HG phenotype. Most of the HG effects were partially or completely rescued by treatment with NAC. These findings demonstrate that HG impairs cell migration due to an increase in oxidative stress that causes polarity loss, deficient adhesion and protrusion. These alterations arise, in large part, from increased Rac1 activity and may contribute to the poor wound healing observed in diabetic patients.
Resumo:
Background: Macrophage migration inhibitory factor (MIF) has special pro-inflammatory roles, affecting the functions of macrophages and lymphocytes and counter-regulating the effects of glucocorticoids on the immune response. The conspicuous expression of MIF during human implantation and early embryonic development also suggests this factor acts in reproductive functions. The overall goal of this study was to evaluate Mif expression by trophoblast and embryo placental cells during mouse pregnancy. Methods: Mif was immunolocalized at implantation sites on gestation days (gd) 7.5, 10.5, 13.5 and 17.5. Ectoplacental cones and fetal placentas dissected from the maternal tissues were used for Western blotting and qRT-PCR assays on the same gestation days. Results: During the post-implantation period (gd7.5), trophoblast giant cells showed strong Mif reactivity. In later placentation phases (gds 10.5-17.5), Mif appeared to be concentrated in the junctional zone and trophoblast giant cells. Mif protein expression increased significantly from gd7.5 to 10.5 (p = 0.005) and from gd7.5 to 13.5 (p = 0.03), remaining at high concentration as gestation proceeded. Higher mRNA expression was found on gd10.5 and was significantly different from gd13.5 (p = 0.048) and 17.5 (p = 0.009). Conclusions: The up-regulation of Mif on gd10.5 coincides with the stage in which the placenta assumes its three-layered organization (giant cells, spongiotrophoblast and labyrinth zones), fetal blood circulation begins and population of uNK cells reaches high proportions at the maternal counter part of the placenta, suggesting that Mif may play a role in either the placentation or in the adaptation of the differentiated placenta to the uterus or still in gestational immunomodulatory responses. Moreover, it reinforces the possibility of specific activities for Mif at the maternal fetal interface.