984 resultados para Ni-P alloy film


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stabilization of nanocrystalline grain sizes by second phase particles can facilitate superplasticity at high strain rates and/or low temperatures. A metastable single phase nano-Ni-P alloy prepared by electrodeposition, with a grain size of similar to 6 nm, transforms to a nanoduplex structure at T> 673 K, with similar to 4 vol.% Ni3P particles at triple junctions and within Ni grains. The nanoduplex microstructure is reasonably stable up to 777 K, and the growth of Ni grains occurs in a coupled manner with the growth of Ni3P particles such that the ratio of the two mean sizes (Z) is essentially constant. High temperature tests for a grain size of 290 nm reveal superplastic behavior with an optimum elongation to failure of 810% at a strain rate of 7 x 10(-4) s(-1) and a relatively low temperature of 777 K. Superplastic deformation enhances both grain growth and the ratio Z, implying that grain boundary sliding (GBS) significantly influences the microstructural dynamics. Analysis of the deformation processes suggests that superplasticity is associated with GBS controlled by the overcoming of intragranular particles by dislocations, so that deformation is independent of the grain size. The nano-Ni-P alloy exhibits lower ductility than nano-Ni due to concurrent cavitation caused by higher stresses. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

用扫描电镜(SEM)观察了化学沉积Ni-P合金薄膜/单晶硅基体的结构与颗粒度,利用X射线衍射(XRD)技术测试了其化学沉积后的残余应力,测量了激光热处理后残余应力的变化规律,分析了残余应力对磨损性能及界面结合强度的影响。实验结果表明,化学沉积Ni-P合金薄膜/硅基体的残余应力均表现为拉应力,经过激光热处理后残余应力发生了变化,由高值的拉应力变为低值的拉应力或压应力;薄膜残余应力对其磨损性能有明显的影响,其磨损量随着残余应力的减小而减小;薄膜与基体结合强度随着残余应力的增大而减小,合理地选择激光热处理参数可

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The variation of surface compositions on amorphous Ni80.4W1.5P18.1 alloy by O-2 oxidation and H-2 reduction treatments have been studied by XPS, UPS and ISS. It shows that addition of tungsten in the amorphous Ni-P alloy leads to dramatic changes of the relating component distributions in the surface layers before and after these treatments. Oxidation of a Ni80.4W1.5P18.1 amorphous alloy in 1 bar of oxygen at 513 K caused a significant segregation of nickel in different oxide states at the surface. The subsequent reduction of the oxidized surface with I bar hydrogen at 553 K resulted in only a small portion of Ni and P being reduced into elemental states, while most of them was found to combine to form a kind of nickel phosphate compound. On the other hand, under the same conditions, the oxidation and reduction of a Ni80P20 alloy gave rise to metallic Ni and elemental P as the predominate species on the alloy surface. The addition of W in the amorphous alloy might act as nuclei for a favorable formation of the phosphate structure which was proposed to be an active species for hydrogen-relating catalytic reactions. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microstructural stability of nanocrystalline Ni-1.5wt.%P alloy with an initial grain size of 3 nm processed by pulsed electrodeposition was studied using differential scanning calorimetry (DSC) and annealing. Microstructural characterization suggests that the observed exothermic peak during heating in DSC is related to both concurrent grain growth and Ni3P formation. Nanoindentation on samples with grain sizes from 3 to 50 nm revealed a breakdown in Hall-Petch strengthening in nano Ni-P alloy at grain sizes <= 10 nm, consistent with some previous observations. It is concluded that there is a grain boundary weakening regime for grain sizes < 10 nm, based on analysis which show that the data cannot be rationalized in terms of microstrain relaxation, variation in elastic modulus, texture evolution and duplex structure formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autocatalytic duplex Ni-P/Ni-W-P coatings were deposited on AZ31B magnesium alloy using stabilizer free nickel carbonate bath. Some of the coated specimens were passivated in chromate solution with and without heat treatment. Plain Ni-P coatings were also prepared for comparison. Coatings were characterized for their surface morphology, composition and corrosion resistance. Energy dispersive analysis of X-ray (EDX) showed that the phosphorous content in the Ni-P coating is 6 wt.% and for Ni-W-P it reduced to 3 wt.% due to the codeposition of tungsten in the Ni-P coating. Marginal increase in P and W contents was observed on passivated coupons along with Cr (0.18 wt.%) and O (2.8 wt.%) contents. Field emission scanning electron microscopy (FESEM) examination of these coating surfaces exhibited the nodular morphology. Chromate passivated surfaces showed the presence of uniformly distributed bright Ni particles along with nodules. Potenfiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out in deaerated 0.15 M NaCI solution to find out the corrosion resistance of the coatings. Among the coatings developed, duplex-heat treated-passivated (duplex-HIP) coatings showed lower corrosion current density (i(corr)) and higher polarization resistance (R-p) indicating the improved corrosion resistance. The charge transfer resistance (R-ct) value obtained for the duplex-HIP was about 170 times higher compared to that for Ni P coating. (c) 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrochemical deposition of Ni-Pd alloy films of various compositions from bath solution containing ethylenediamine (EDA) was carried out to use as anode material for methanol oxidative fuel cell in H2SO4 medium. Electronic absorption spectrum of bath solution containing Ni2+ Pd2+ ions and EDA indicated the formation of a four coordinate square planar metal-ligand complex of both the metal ions. X-ray diffraction (XRD) patterns of the deposited alloy films show an increase in Pd-Ni alloy lattice parameter with increase in Pd content, and indicate the substitution of Pd in the lattice. A nano/ultrafine kind of crystal growth was observed in the alloy film deposited at low current density (2.5 mA cm(-2)). X-ray photoelectron spectroscopic (XPS) studies on the successively sputtered films showed the presence of Ni and Pd in pure metallic states and the surface concentration ratio of Ni to Pd is less than bulk indicating the segregation of Pd on the surface. Electro-catalytic oxidation of methanol in H2SO4 medium is found to be promoted on Ni-Pd electrodeposits. The anodic peak current characteristics to oxidation reaction on Ni-Pd was found typically high when compared to pure nickel and the relative increase in surface area by alloying the Ni by Pd was found to be as much as 300 times. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Halloysite nanotubes (HNTs) of the dimension 50nm x 1-3 mu m (diameter x length) are utililized to fabricate the alloy composite by employing electroless/autocatalytic deposition technique. Electroless Ni-P-HNT binary alloy composite coatings are prepared successfully on low carbon steel. These nanotubes were made to get inserted/incorporated into nickel matrix and corresponding composites are examined for their electrochemical, mechanical and tribological performances and compared with that of plain Ni-P. The coatings were characterized using scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDX) techniques to analyze surface nature and composition correspondingly. Small amount of incorporated HNTs made Ni-P deposits appreciable enhancement and betterment in corrosion resistance, hardness and friction resistance. This drastic improvement in the properties reflects the effect of addition of HNTs into Ni-P matrix leading to the development of high performance Ni-P-HNT composite coatings. (C) 2012 Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electroless nickel (EN) coatings are recognised for their hardness and wear resistance in automotive and aerospace industries. In this work, electroless Ni–P coatings were deposited on aluminium alloy substrate LM24 (Al–9 wt.% Si alloy) and the effect of post treatment on the wear resistance was studied. The post treatments included heat treatment and lapping with two different surface textures. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and micro-abrasion tester were used to analyse morphology, structure and abrasive wear resistance of the coatings. Post heat treatment significantly improved the coating density and structure, giving rise to enhanced hardness and wear resistance. Microhardness of electroless Ni–P coatings with thickness of about 15 μm increased due to the formation of Ni3P after heat treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electroless nickel composite (ENC) with various silicon carbide contents was deposited onto aluminium alloy (LM24) substrate. The wear behaviour and the microhardness of the composite coating samples were investigated and compared with particles free and aluminium substrate samples using micro-scale abrasion tester and microhardness tester respectively. The wear scar marks and wear volume were analysed by optical microscope. The wear tracks were further studied using scanning electron microscopy (SEM). The embedded particles were found to get pressed into the matrix which helps resisting further wearing process for composite samples. However, random orientation of microcuts and microfallow were seen for ENC sample but more uniform wearing was observed for EN sample. The composite coating with low content of SiC was worn minimum. Early penetration into the substrate was seen for samples with higher SiC content. Microhardness was improved after heat treatment for all the samples containing various SiC content. Under dry sliding condition, inclusion of particles in the matrix did not improve the wearing resistance performance in as-deposited state. The wearing worsened as the content of the particles increased generally. However, on heat treatment, the composite coatings exhibited improved wear resistance and the best result was obtained from the one with low particle contents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>This study aimed to verify the effect of modified section method and laser-welding on the accuracy of fit of ill-fitting commercially pure titanium (cp Ti) and Ni-Cr alloy one-piece cast frameworks. Two sets of similar implant-supported frameworks were constructed. Both groups of six 3-unit implant-supported fixed partial dentures were cast as one-piece [I: Ni-Cr (control) and II: cp Ti] and evaluated for passive fitting in an optical microscope with both screws tightened and with only one screw tightened. All frameworks were then sectioned in the diagonal axis at the pontic region (III: Ni-Cr and IV: cp Ti). Sectioned frameworks were positioned in the matrix (10-Ncm torque) and laser-welded. Passive fitting was evaluated for the second time. Data were submitted to anova and Tukey-Kramer honestly significant difference tests (P < 0 center dot 05). With both screws tightened, one-piece cp Ti group II showed significantly higher misfit values (27 center dot 57 +/- 5 center dot 06 mu m) than other groups (I: 11 center dot 19 +/- 2 center dot 54 mu m, III: 12 center dot 88 +/- 2 center dot 93 mu m, IV: 13 center dot 77 +/- 1 center dot 51 mu m) (P < 0 center dot 05). In the single-screw-tightened test, with readings on the opposite side to the tightened side, Ni-Cr cast as one-piece (I: 58 center dot 66 +/- 14 center dot 30 mu m) was significantly different from cp Ti group after diagonal section (IV: 27 center dot 51 +/- 8 center dot 28 mu m) (P < 0 center dot 05). On the tightened side, no significant differences were found between groups (P > 0 center dot 05). Results showed that diagonally sectioning ill-fitting cp Ti frameworks lowers misfit levels of prosthetic implant-supported frameworks and also improves passivity levels of the same frameworks when compared to one-piece cast structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.