924 resultados para Ni-Co mixed oxides
Resumo:
A preparation method for a new electrode material based on the LiNi0.8Co0.2O2/polyaniline (PANI) composite is reported. This material is prepared by in situ polymerization of aniline in the presence of LiNi0.8Co0.2O2 assisted by ultrasonic irradiation. The materials are characterized by XRD, TG-DTA, FTIR, XPS, SEM-EDX, AFM, nitrogen adsorption (BET surface area) and electrical conductivity measurements. PANI in the emeraldine salt form interacts with metal-oxide particles to assure good connectivity. The dc electrical conductivity measurements at room temperature indicate that conductivity values are one order of magnitude higher in the composite than in the oxide alone. This behavior determines better reversibility for Li-insertion in charge-discharge cycles compared to the pristine mixed oxide when used as electrode of lithium batteries. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
Hydrotalcite-like compounds (HTLcs) CoMAlCO3, where M stands for Cr, Mn, Ni, Cu, or Fe, were synthesized by coprecipitation. After calcination at 450 degrees C, they became mixed oxides with spinel-like structure. The mixed oxides were characterized by XRD, BET, chemical analysis and the adsorption of NO. The catalytic decomposition of NO and its reduction by CO were studied over these mixed oxides. The study showed that the catalytic activity for removal of NO, was very high. The reaction mechanism is proposed and the effects of d-electrons of the transition metals on catalytic activity are elucidated.
Resumo:
Catalytic NO decomposition on LaSrMn1-x Ni (x) O4+delta (0 a parts per thousand currency sign x a parts per thousand currency sign 1) is investigated. The activity of NO decomposition increases dramatically after the substitution of Ni for Mn, but decreases when Mn is completely replaced by Ni (x = 1.0). The optimum value is at x = 0.8. These indicate that the catalytic performance of the samples is contributed by the synergistic effect of Mn and Ni. O-2-TPD and H-2-TPR experiments are carried out to explain the change of activity. The former indicates that only when oxygen vacancy is created, could the catalyst show enhanced activity for NO decomposition; the latter suggests that the best activity is obtained from catalyst with the most matched redox potentials (in this work, the biggest Delta T and Delta E values).
Resumo:
Various hydrotalcite based catalysts were prepared for catalytic removal of NO (NO reduction by CO). The general formula of hydrotalcite compounds (HTLc) was Co-Cu-Al-HTLc. Precalcination of these materials at 450 degrees C for NO reduction by CO, was necessary for catalytic activity. All catalysts except Co-A1 and Cu-Al have very good activity at lower temperature for NO reduction by CO. All samples were characterized by XRD and BET. The tentative reaction mechanism was also proposed.
Resumo:
Catalysts with spinel structure derived from Hydrotalcite-like Compounds (HTLcs) containing cobalt have been investigated in NO catalytic reduction by Co. It was found that catalysts with spinel structures derived from HTLcs had obviously higher activity than that prepared from general methods. A two-step reaction was observed during the reaction curse: NO was first reduced to N2O by Co, and with the increase of temperature, the N2O was reduced to N-2. The reactivity of the catalysts studied increased with the amount of cobalt-content in the catalyst, and decreased with the calcination temperature. The crystal defect would play an important role in the reaction.
Resumo:
A series of sample having the stoichiometry La4BaCu5-xMnxO12 (x = 0 similar to 5) were prepared, characterized by XRD, IR and H-2 - TPR and used as catalyst for NO + CO reaction. It was found that they have 5 - layered ABO(3) - type structure. The results of H-2 - TPR showed that the Cu ion was more easily reduced while a part of them was replaced by Mn ions. Their catalytic behavior to NO + CO reaction was investigate, La4BaCu2Mn3O12 showed the highest catalyst activity for the reaction than the others. The reaction mechanism is discussed:the activity of the catalysts could be attributed to the Cu ions, but it was improved when Mn ions took the place of some Cu ions.
Resumo:
The mixed oxides, including LaBa2Cu3O7, LaBaCu2O5, La4BaCu5O12 with perovskite structure, were prepared. The catalysts were characterized by means of chemical analysis, XRD, H-2-TPR. It was found that their structures were layered ABO(3) perovskite structure and they were the active catalysts for the NO reduction by CO. The existence of Cu3+ is an important factor to give the catalysts a high activity for the NO reduction by CO.
Resumo:
A series of (AO) (ABO(3))(n)(A = La, B = Ni, n = 1 similar to 4) type mixed oxides were synthesized and characterized by means of XRD, XPS, IR, TPD, TPR. Their structure characteristics and redox properties were studied. The nonstoichiometry (lambda) of oxygen and the valence of transition metal Ni were determined by using chemical analysis method. The catalytic activities of this series of mixed oxides for complete oxidation of CO and CH4 were examined and the relationships among activity, composition and structure were discussed.
Resumo:
Three series of samples LaMnyCo1-yO3+/-lambda, LaFeyMn1-yO3+/-lambda, and LaFeyCo1-yO3+/-lambda (y = 0.0 to 1.0) with Perovskite structure were prepared by an explosion method different from the generally used ceramic techniques. The variation of crystal
Resumo:
Co3O4, Fe2O3 and a mixture of the two oxides Co–Fe (molar ratio of Co3O4/Fe2O3 = 0.67 and atomic ratio of Co/Fe = 1) were prepared by the calcination of cobalt oxalate and/or iron oxalate salts at 500 °C for 2 h in static air using water as a solvent/dispersing agent. The catalysts were studied in the steam reforming of ethanol to investigate the effect of the partial substitution of Co3O4 with Fe2O3 on the catalytic behaviour. The reforming activity over Fe2O3, while initially high, underwent fast deactivation. In comparison, over the Co–Fe catalyst both the H2 yield and stability were higher than that found over the pure Co3O4 or Fe2O3 catalysts. DRIFTS-MS studies under the reaction feed highlighted that the Co–Fe catalyst had increased amounts of adsorbed OH/water; similar to Fe2O3. Increasing the amount of reactive species (water/OH species) adsorbed on the Co–Fe catalyst surface is proposed to facilitate the steam reforming reaction rather than decomposition reactions reducing by-product formation and providing a higher H2 yield.
Resumo:
The catalytic activity of some of the ABO3 (A = La, Pr and Sm, B= Cr, Mn, Fe, Co and Ni) perovskite-type oxides for the liquid phase reduction of ketone and oxidation of alcohol in 2-propanol medium has been studied. The data have been correlated with the surface electron donor properties of these oxides. The surface electron donor properties have been determined from the adsorption of electron acceptors of varying electron affinities on the oxide surface.
Resumo:
The future hydrogen demand is expected to increase, both in existing industries (including upgrading of fossil fuels or ammonia production) and in new technologies, like fuel cells. Nowadays, hydrogen is obtained predominantly by steam reforming of methane, but it is well known that hydrocarbon based routes result in environmental problems and besides the market is dependent on the availability of this finite resource which is suffering of rapid depletion. Therefore, alternative processes using renewable sources like wind, solar energy and biomass, are now being considered for the production of hydrogen. One of those alternative methods is the so-called “steam-iron process” which consists in the reduction of a metal-oxide by hydrogen-containing feedstock, like ethanol for instance, and then the reduced material is reoxidized with water to produce “clean” hydrogen (water splitting). This kind of thermochemical cycles have been studied before but currently some important facts like the development of more active catalysts, the flexibility of the feedstock (including renewable bio-alcohols) and the fact that the purification of hydrogen could be avoided, have significantly increased the interest for this research topic. With the aim of increasing the understanding of the reactions that govern the steam-iron route to produce hydrogen, it is necessary to go into the molecular level. Spectroscopic methods are an important tool to extract information that could help in the development of more efficient materials and processes. In this research, ethanol was chosen as a reducing fuel and the main goal was to study its interaction with different catalysts having similar structure (spinels), to make a correlation with the composition and the mechanism of the anaerobic oxidation of the ethanol which is the first step of the steam-iron cycle. To accomplish this, diffuse reflectance spectroscopy (DRIFTS) was used to study the surface composition of the catalysts during the adsorption of ethanol and its transformation during the temperature program. Furthermore, mass spectrometry was used to monitor the desorbed products. The set of studied materials include Cu, Co and Ni ferrites which were also characterized by means of X-ray diffraction, surface area measurements, Raman spectroscopy, and temperature programmed reduction.
Resumo:
The mixed oxides LaNiO3, La0.1Sr0.9NiO3, La2NiO4 and LaSrNiO4 with perovskite (ABO(3)) and related(A(2)BO(4)) structures were prepared and the adsorption property for NO and the catalytic activity for NO decomposition over these oxidse were also tested. The catalysts were characterized by means of BET surface measurement, chemical analysis, NO-TPD etc.. It was shown that the adsorption amount of NO is correlated with the concentration of oxygen vacancy formed and the adsorption type and strength of NO are related to the valence of metallic ion. Generally there are three kinds of adsorption species, NO-, NO+ and NO on the mixed oxides, among them the negative adsorpion species (NO-) are active for NO decomposition. The weaker the adsorption of oxygen on the catalyst is, the faster the mobility of oxygen is and the easier the redox process takes place in reproducing the active sites in which the oxygen species (O-, O2-) would participate.