999 resultados para Neutrino-Oscillation Experiments


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a general formalism for extracting information on the fundamental parameters associated with neutrino masses and mixings from two or more long baseline neutrino oscillation experiments. This formalism is then applied to the current most likely experiments using neutrino beams from the Japan Hadron Facility (JHF) and Fermilab's NuMI beamline. Different combinations of muon neutrino or muon anti-neutrino running are considered. The type of neutrino mass hierarchy is extracted using the effects of matter on neutrino propogation. Contrary to naive expectation, we find that both beams using neutrinos is more suitable for determining the hierarchy provided that the neutrino energy divided by baseline (E/L) for NuMI is smaller than or equal to that of JHF, whereas to determine the small mixing angle, theta(13), and the CP or T violating phase delta, one neutrino and the other anti-neutrino are most suitable. We make extensive use of bi-probability diagrams for both understanding and extracting the physics involved in such comparisons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the use of the CP asymmetry parameter (ACP) as a possible observable of CP violation in the leptonic sector. In order to do this, we study for a wide range of values of LIE the behavior of this asymmetry for the corresponding maximal value of the CP violation factor allowed by all the present experimental limits on neutrino oscillations in vacuum and the recent Super-Kamiokande atmospheric neutrino result. We work in the three neutrino flavor framework. ©1999 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We point out that determination of the MNS matrix element \U-e3\ = s(13) in long-baseline nu(mu) --> nu(e) neutrino oscillation experiments suffers from large intrinsic uncertainty due to the unknown CP violating phase delta and sign of Deltam(13)(2). We propose a new strategy for accurate determination of theta(13); tune the beam energy at the oscillation maximum and do the measurement both in neutrino and antineutrino channels. We show that it automatically resolves the problem of parameter ambiguities which involves delta, theta(13), and the sign of Deltam(13)(2). (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The measurement of the mixing angle theta(13), sign of Deltam(13)(2), and the CP or T violating phase delta is fraught with ambiguities in neutrino oscillation. In this paper we give an analytic treatment of the paramater degeneracies associated with measuring the nu(mu)-->nu(e) probability and its CP and/or T conjugates. For CP violation, we give explicit solutions to allow us to obtain the regions where there exist twofold and fourfold degeneracies. We calculate the fractional differences, (Deltatheta/(θ) over bar), between the allowed solutions which may be used to compare with the expected sensitivities of the experiments. For T violation we show that there is always a complete degeneracy between solutions with positive and negative Deltam(13)(2) which arises due to a symmetry and cannot be removed by observing one neutrino oscillation probability and its T conjugate. Thus there is always a fourfold parameter degeneracy apart from exceptional points. Explicit solutions are also given and the fractional differences are computed. The biprobability CP/T trajectory diagrams are extensively used to illuminate the nature of the degeneracies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assuming that neutrinos are Majorana particles, in a three-generation framework, current and future neutrino oscillation experiments can determine six out of the nine parameters which fully describe the structure of the neutrino mass matrix. We try to clarify the interplay among the remaining parameters, the absolute neutrino mass scale and two CP violating Majorana phases, and how they can be accessed by future neutrinoless double beta (0vυββ) decay experiments, for the normal as well as for the inverted order of the neutrino mass spectrum. Assuming the oscillation parameters to be in the range presently allowed by atmospheric, solar, reactor, and accelerator neutrino experiments, we quantitatively estimate the bounds on m 0, the lightest neutrino mass, that can be inferred if the next generation 0υββ decay experiments can probe the effective Majorana mass (m ee) down to ∼1 meV. In this context we conclude that in the case that neutrinos are Majorana particles, (a) if m 0≳300 meV, i.e., within the range directly attainable by future laboratory experiments as well as astrophysical observations, then m ee≳30 meV must be observed, (b) if m 0 ≤ 300 meV, results from future 0υββ decay experiments combined with stringent bounds on the neutrino oscillation parameters, especially the solar ones, will place much stronger limits on the allowed values of m 0 than these direct experiments. For instance, if a positive signal is observed around m ee = 10 meV, we estimate 3≲m 0/meV≲65 at 95% C.L.; on the other hand, if no signal is observed down to m ee = 10 meV, then m 0≲55 meV at 95% C.L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a search for nonzero θ13 and deviations of sin2θ23 from 0.5 in the oscillations of atmospheric neutrino data from Super-Kamiokande I, II, and III. No distortions of the neutrino flux consistent with nonzero θ13 are found and both neutrino mass hierarchy hypotheses are in agreement with the data. The data are best fit at Δm2=2.1×10-3eV2, sin2θ13=0.0, and sin2θ23=0.5. In the normal (inverted) hierarchy θ13 and Δm2 are constrained at the one-dimensional 90% C.L. to sin2θ13<0.04(0.09) and 1.9(1.7)×10 -3<Δm2<2.6(2.7)×10-3eV2. The atmospheric mixing angle is within 0.407≤sin2θ23≤0.583 at 90% C.L. © 2010 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The weak gravitational field expansion method to account for the gravitationally induced neutrino oscillation effect is critically examined, then it is shown that the splitting of the neutrino phase into a kinematic and a gravitational phase is not always possible because the relativistic factor modifies the particle interference phase splitting condition in a gravitational field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of the teleparallel equivalent of general relativity, we obtain the evolution equation of the neutrino oscillation in vacuum. A comparison with the equivalent result of general relativity case, shows that the Dirac equation in Riemann and Weitzenbock space-times is equivalent in the spherical symmetric Schwarzschild space-time, but turns out to be different in the case of the axial symmetry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of CP-violating observables in neutrino oscillation experiments have been studied in the literature as a way to determine the CP-violating phase in the mixing matrix for leptons. Here we show that such observables also probe new neutrino interactions in the production or detection processes. Genuine CP violation and fake CP violation due to matter effects are sensitive to the imaginary and real parts of new couplings. The dependence of the CP asymmetry on the source-detector distance is different from the standard one and, in particular, enhanced at short distances. We estimate that future neutrino factories will be able to probe in this way new interactions that are up to four orders of magnitude weaker than the weak interactions. We discuss the possible implications for models of new physics. ©2001 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an alternative explanation for the deficit of nu(e) in Ga solar neutrino calibration experiments and of the (nu) over bar (e) in short-baseline reactor experiments by a model where neutrinos can oscillate into sterile Kaluza-Klein modes that can propagate in compactified submicrometer flat extra dimensions. We have analyzed the results of the gallium radioactive source experiments and 19 reactor experiments with baseline shorter than 100 m, and showed that these data can be fit into this scenario. The values of the lightest neutrino mass and of the size of the largest extra dimension that are compatible with these experiments are mostly not excluded by other neutrino oscillation experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The T2K collaboration reports a precision measurement of muon neutrino disappearance with an off-axis neutrino beam with a peak energy of 0.6 GeV. Near detector measurements are used to constrain the neutrino flux and cross section parameters. The Super-Kamiokande far detector, which is 295 km downstream of the neutrino production target, collected data corresponding to 3.01×1020 protons on target. In the absence of neutrino oscillations, 205±17 (syst.) events are expected to be detected and only 58 muon neutrino event candidates are observed. A fit to the neutrino rate and energy spectrum assuming three neutrino flavors, normal mass hierarchy and θ23≤π/4 yields a best-fit mixing angle sin2(2θ23)=1.000 and mass splitting |Δm232|=2.44×10−3 eV2/c4. If θ23≥π/4 is assumed, the best-fit mixing angle changes to sin2(2θ23)=0.999 and the mass splitting remains unchanged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of HyperKamiokande is the study of CP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this paper, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis uses the framework and systematic uncertainties derived from the ongoing T2K experiment. With a total exposure of 7.5 MW × 10⁷ s integrated proton beam power (corresponding to 1.56 × 10²² protons on target with a 30 GeV proton beam) to a 2.5-degree off-axis neutrino beam, it is expected that the leptonic CP phase δCP can be determined to better than 19 degrees for all possible values of δCP , and CP violation can be established with a statistical significance of more than 3 σ (5 σ) for 76% (58%) of the δCP parameter space. Using both νe appearance and νµ disappearance data, the expected 1σ uncertainty of sin²θ₂₃ is 0.015(0.006) for sin²θ₂₃ = 0.5(0.45).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on measurements of neutrino oscillation using data from the T2K long-baseline neutrino experiment collected between 2010 and 2013. In an analysis of muon neutrino disappearance alone, we find the following estimates and 68% confidence intervals for the two possible mass hierarchies: Normal Hierarchy: sin²θ₂₃= 0.514+0.055−0.056 and ∆m²_32 = (2.51 ± 0.10) × 10⁻³ eV²/c⁴ Inverted Hierarchy: sin²θ₂₃= 0.511 ± 0.055 and ∆m²_13 = (2.48 ± 0.10) × 10⁻³ eV²/c⁴ The analysis accounts for multi-nucleon mechanisms in neutrino interactions which were found to introduce negligible bias. We describe our first analyses that combine measurements of muon neutrino disappearance and electron neutrino appearance to estimate four oscillation parameters, |∆m^2|, sin²θ₂₃, sin²θ₁₃, δCP , and the mass hierarchy. Frequentist and Bayesian intervals are presented for combinations of these parameters, with and without including recent reactor measurements. At 90% confidence level and including reactor measurements, we exclude the region δCP = [0.15, 0.83]π for normal hierarchy and δCP = [−0.08, 1.09]π for inverted hierarchy. The T2K and reactor data weakly favor the normal hierarchy with a Bayes Factor of 2.2. The most probable values and 68% 1D credible intervals for the other oscillation parameters, when reactor data are included, are: sin²θ₂₃= 0.528+0.055−0.038 and |∆m²_32| = (2.51 ± 0.11) × 10⁻³ eV²/c⁴.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several topics on CP violation in the lepton sector are reviewed. A few theoretical aspects concerning neutrino masses, leptonic mixing, and CP violation will be covered, with special emphasis on seesaw models. A discussion is provided on observable effects which are manifest in the presence of CP violation, particularly, in neutrino oscillations and neutrinoless double beta decay processes, and their possible implications in collider experiments such as the LHC. The role that leptonic CP violation may have played in the generation of the baryon asymmetry of the Universe through the mechanism of leptogenesis is also discussed.