1000 resultados para Neurosecretory Systems
Resumo:
Ovalbumin-like serine protease inhibitors are mainly localized intracellularly and their in vivo functions are largely unknown. To elucidate their physiological role(s), we studied the expression of one of these inhibitors, protease inhibitor 8 (PI-8), in normal human tissues by immunohistochemistry using a PI-8-specific monoclonal antibody. PI-8 was strongly expressed in the nuclei of squamous epithelium of mouth, pharynx, esophagus, and epidermis, and by the epithelial layer of skin appendages, particularly by more differentiated epithelial cells. PI-8 was also expressed by monocytes and by neuroendocrine cells in the pituitary gland, pancreas, and digestive tract. Monocytes showed nuclear and cytoplasmic localization of PI-8, whereas neuroendocrine cells showed only cytoplasmic staining. In vitro nuclear localization of PI-8 was confirmed by confocal analysis using serpin-transfected HeLa cells. Furthermore, mutation of the P(1) residue did not affect the subcellular distribution pattern of PI-8, indicating that its nuclear localization is independent of the interaction with its target protease. We conclude that PI-8 has a unique distribution pattern in human tissues compared to the distribution patterns of other intracellular serpins. Additional studies must be performed to elucidate its physiological role.
Resumo:
The scaffold protein Islet-Brain1/c-Jun amino-terminal kinase Interacting Protein-1 (IB1/JIP-1) is a modulator of the c-Jun N-terminal kinase (JNK) activity, which has been implicated in pleiotrophic cellular functions including cell differentiation, division, and death. In this study, we described the presence of IB1/JIP-1 in epithelium of the rat prostate as well as in the human prostatic LNCaP cells. We investigated the functional role of IB1/JIP-1 in LNCaP cells exposed to the proapoptotic agent N-(4-hydroxyphenyl)retinamide (4-HPR) which induced a reduction of IB1/JIP-1 content and a concomittant increase in JNK activity. Conversely, IB1/JIP-1 overexpression using a viral gene transfer prevented the JNK activation and the 4-HPR-induced apoptosis was blunted. In prostatic adenocarcinoma cells, the neuroendocrine (NE) phenotype acquisition is associated with tumor progression and androgen independence. During NE transdifferentiation of LNCaP cells, IB1/JIP-1 levels were increased. This regulated expression of IB1/JIP-1 is secondary to a loss of the neuronal transcriptional repressor neuron restrictive silencing factor (NRSF/REST) function which is known to repress IB1/JIP-1. Together, these results indicated that IB1/JIP-1 participates to the neuronal phenotype of the human LNCaP cells and is a regulator of JNK signaling pathway.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
Water intake was studied in albino rats with lesions in the lateral preoptic area, in the subfornical organ, and in both the lateral preoptic area and the subfornical organ. Drinking was induced by cellular dehydration, hypovolemia, hypotension (isoproterenol or caval ligation), and water deprivation. The animals with lesions in both areas showed a significant reduction in their water intake in response to cellular dehydration. Drinking due to extracellular dehydration was reduced in the animals that received only subfornical organ lesions, and was reduced even further in the animals with both areas ablated. The lesions in the subfornical organ were sufficient to reduce the thirst induced by caval ligation. The lesions in both areas inhibit water intake induced by caval ligation. Water intake induced by deprivation was reduced when both areas were destroyed. These findings demonstrate that both the lateral preoptic area and the subfornical organ are necessary for normal drinking in response to cellular dehydration, hypovolemia, and hypotension. There is further evidence that the lateral preoptic area and subfornical organ interact in the control of water intake induced by a variety of thirst challenges.
Resumo:
Cholinergic and adrenergic agonists and antagonists were injected directly into the subfornical organ (SFO), via implanted cannulae, and the volume of water ingested was recorded over a period of 1 hour after injection. Application of 2 nmol carbachol caused intense water intake in 100% of the animals (8.78±0.61 ml), with a very short intake latency. When the 2 nmol carbachol dose was preceded by increased doses of atropine, a progressive reduction in water intake was observed, with complete blockage of the thirst-inducing response to carbachol at the 20 nmol dose level with atropine. Followed by several doses of hexamethonium, the water intake caused by application of 2 nmol carbachol was reduced, although the response was not totally blocked. Injection of 80 nmol of nicotine had a significant thirst-inducing inducing effect in 50% of the animals studied (1.06±0.18 ml) and increase in water intake was further reduced by application of increased doses of hexamethonium. Raising the dose levels of noradrenaline into th SFO caused an increase in water intake although to a lesser degree than was observed after carbachol injection. When the 40 nmol dose of noradrenaline was preceded by increased doses of propranolol (5 to 40 nmol), there was a gradual reduction in water intake, with total blockage at the 40 nmol dose. Application of phentolamine in doses of 10 to 80 nmol caused no reduction in water intake after 40 nmol of noradrenaline. Application of isoproterenol at doses from 20 to 160 nmol into the SFO caused a dosedependent increase in water intake which was blocked by previous applications of propranolol. These results support the hypothesis that the water intake caused by chemical stimulation of the SFO is mainly due to muscarinic cholinergic receptors, although the influence of nicotinic receptors or participation of adrenergic mediation should not be ruled out. © 1984.
Resumo:
A tubular adenocarcinoma of the colon with solid area composed by small cells that was found by immunohistochemistry study using antibody to neuron-specific enolase (NSE) to possess neuroendocrine differentiation is related. In another areas of the tumor were visualized keratinizing squamous cells. The presence of neuro-endocrine and squamous cells features provide further evidence that neoplastic colonic cells have the capacity for multi-directional differentiation. The implications of this combination in relation to theories of tumor origin and differentiation and the prognostic significance of neuro-endocrine cells in malignant neoplasms of the gastrointestinal tract are discussed.
Resumo:
Neonatal administration of monosodium glutamate (MSG) in rats causes definite neuroendocrine disturbances which lead to alterations in many organ systems. The possibility that MSG could affect tooth and salivary gland physiology was examined in this paper. Male and female pups were injected subcutaneously with MSG (4 mg/g BW) once a day at the 2nd, 4th, 6th, 8th and 10th day after birth. Control animals were injected with saline, following the same schedule. Lower incisor eruption was determined between the 4th and the 10th postnatal days, and the eruption rate was measured between the 43rd and the 67th days of age. Pilocarpine-stimulated salivary flow was measured at 3 months of age; protein and amylase contents were thereby determined. The animals treated with MSG showed significant reductions in the salivary flow (males, -27%; females, -40%) and in the weight of submandibular glands (about -12%). Body weight reduction was only about 7% for males, and did not vary in females. Saliva of MSG-treated rats had increased concentrations of total proteins and amylase activity. The eruption of lower incisors occurred earlier in MSG-treated rats than in the control group, but on the other hand the eruption rate was significantly slowed down. The incisor microhardness was found to be lower than that of control rats. Our results show that neonatal MSG treatment causes well-defined oral disturbances in adulthood in rats, including salivary flow reduction, which coexisted with unaltered protein synthesis, and disturbances of dental mineralization and eruption. These data support the view that some MSG-sensitive hypothalamic nuclei have an important modulatory effect on the factors which determine caries susceptibility.
Resumo:
Rats bearing lesions in the septal area followed by lesions in the subfornical organ were submitted to various thirst-eliciting procedures. The rats with hyperdipsia induced by lesions of the septal area drank more water than either during the control period or after lesion of the subfornical organ under the same thirst-eliciting or angiotensin-liberating stimuli (polyethyleneglycol, isoproterenol, water deprivation and ligation of the inferior vena cava). The overdrinking elicited by lesions in the septal area was blocked after lesion of the subfornical organ. Neither hypovolemia, nor hypotension or water deprivation could elicit increased water intake in animals whose subfornical organ had been destroyed. Animals with lesions in the subfornical organ showed decreased water intake after cellular dehydration. The results obtained suggest that the subfornical organ acts as a more important structure than the septal area in the regulation of water intake elicited by angiotensin, with two opposite effects: a direct one facilitating water intake, and an indirect one inhibiting the septal area. The septal area has an inhibitory effect on the subfornical organ and on water intake. © 1980.