73 resultados para Neuropharmacology.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuropharmacology (Elsevier) Special Issue entitled "Fluorescent Tools in Neuropharmacology" includes ten contributions from key researchers in this field. These contributions comprise reviews and orginial research articles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"Biological Research on Addiction examines the neurobiological mechanisms of drug use and drug addiction, describing how the brain responds to addictive substances as well as how it is affected by drugs of abuse. The book's four main sections examine behavioral and molecular biology; neuroscience; genetics; and neuroimaging and neuropharmacology as they relate to the addictive process. This volume is especially effective in presenting current knowledge on the key neurobiological and genetic elements in an individual's susceptibility to drug dependence, as well as the processes by which some individuals proceed from casual drug use to drug dependence. Biological Research on Addiction is one of three volumes comprising the 2,500-page series, Comprehensive Addictive Behaviors and Disorders. This series provides the most complete collection of current knowledge on addictive behaviors and disorders to date. In short, it is the definitive reference work on addictions."--publisher website

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracts from the Ginkgo biloba tree are widely used as herbal medicines, and include bilobalide (BB) and ginkgolides A and B (GA and GB). Here we examine their effects on human 5-HT(3)A and 5-HT(3)AB receptors, and compare these to the effects of the structurally related compounds picrotin (PTN) and picrotoxinin (PXN), the two components of picrotoxin (PTX), a known channel blocker of 5-HT3, nACh and GABA(A) receptors. The compounds inhibited 5-HT-induced responses of 5-HT3 receptors expressed in Xenopus oocytes, with IC50 values of 470 mu M (BB), 730 mu M (GB), 470 mu M (PTN), 11 mu M (PXN) and > 1 mM (GA) in 5-HT(3)A receptors, and 3.1 mM (BB), 3.9 mM (GB), 2.7 mM (PTN), 62 mu M (PXN) and > 1 mM (GA) in 5-HT(3)AB receptors. Radioligand binding on receptors expressed in HEK 293 cells showed none of the compounds displaced the specific 5-HT3 receptor antagonist [H-3]granisetron, confirming that they do not act at the agonist binding site. Inhibition by GB at 5-HT(3)A receptors is weakly use-dependent, and recovery is activity dependent, indicating channel block. To further probe their site of action at 5-HT(3)A receptors, BB and GB were applied alone or in combination with PXN, and the results fitted to a mathematical model; the data revealed partially overlapping sites of action. We conclude that BB and GB block the channel of the 5-HT(3)A receptor. Thus these compounds have comparable, although less potent, behaviour than at some other Cys-loop receptors, demonstrating their actions are conserved across the family. (C) 2010 Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

β-amyloid1-42 (Aβ1-42) is a major endogenous pathogen underlying the aetiology of Alzheimer's disease (AD). Recent evidence indicates that soluble Aβ oligomers, rather than plaques, are the major cause of synaptic dysfunction and neurodegeneration. Small molecules that suppress Aβ aggregation, reduce oligomer stability or promote off-pathway non-toxic oligomerization represent a promising alternative strategy for neuroprotection in AD. MRZ-99030 was recently identified as a dipeptide that modulates Aβ1-42 aggregation by triggering a non-amyloidogenic aggregation pathway, thereby reducing the amount of intermediate toxic soluble oligomeric Aβ species. The present study evaluated the relevance of these promising results with MRZ-99030 under pathophysiological conditions i.e. against the synaptotoxic effects of Aβ oligomers on hippocampal long term potentiation (LTP) and two different memory tasks. Aβ1-42 interferes with the glutamatergic system and with neuronal Ca2+ signalling and abolishes the induction of LTP. Here we demonstrate that MRZ-99030 (100–500 nM) at a 10:1 stoichiometric excess to Aβ clearly reversed the synaptotoxic effects of Aβ1-42 oligomers on CA1-LTP in murine hippocampal slices. Co-application of MRZ-99030 also prevented the two-fold increase in resting Ca2+ levels in pyramidal neuron dendrites and spines triggered by Aβ1-42 oligomers. In anaesthetized rats, pre-administration of MRZ-99030 (50 mg/kg s.c.) protected against deficits in hippocampal LTP following i.c.v. injection of oligomeric Aβ1-42. Furthermore, similar treatment significantly ameliorated cognitive deficits in an object recognition task and under an alternating lever cyclic ratio schedule after the i.c.v. application of Aβ1-42 and 7PA2 conditioned medium, respectively. Altogether, these results demonstrate the potential therapeutic benefit of MRZ-99030 in AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Adverse effects (AEs) of antipsychotic medication have important implications for patients and prescribers in terms of wellbeing, treatment adherence and quality of life. This review summarises strategies for collecting and reporting AE data across a representative literature sample to ascertain their rigour and comprehensiveness. Methods: A PsycINFO search, following PRISMA Statement guidelines, was conducted in English-language journals (1980–July 2014) using the following search string: (antipsychotic* OR neuroleptic*) AND (subjective effect OR subjective experience OR subjective response OR subjective mental alterations OR subjective tolerability OR subjective wellbeing OR patient perspective OR self-rated effects OR adverse effects OR side-effects). Of 7,825 articles, 384 were retained that reported quantified results for AEs of typical or atypical antipsychotics amongst transdiagnostic adult, adolescent, and child populations. Information extracted included: types of AEs reported; how AEs were assessed; assessment duration; assessment of the global impact of antipsychotic consumption on wellbeing; and conflict of interest due to industry sponsorship. Results: Neurological, metabolic, and sedation-related cognitive effects were reported most systematically relative to affective, anticholinergic, autonomic, cutaneous, hormonal, miscellaneous, and non-sedative cognitive effects. The impact of AEs on patient wellbeing was poorly assessed. Cross-sectional and prospective research designs yielded more comprehensive data about AE severity and prevalence than clinical or observational retrospective studies. 3 Conclusions: AE detection and classification can be improved through the use of standardised assessment instruments and consideration of subjective patient impact. Observational research can supplement information from clinical trials to improve the ecological validity of AE data.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synaptic recruitment of AMPA receptors (AMPARs) represents a key postsynaptic mechanism driving functional development and maturation of glutamatergic synapses. At immature hippocampal synapses, PKA-driven synaptic insertion of GluA4 is the predominant mechanism for synaptic reinforcement. However, the physiological significance and molecular determinants of this developmentally restricted form of plasticity are not known. Here we show that PKA activation leads to insertion of GluA4 to synaptic sites with initially weak or silent AMPAR-mediated transmission. This effect depends on a novel mechanism involving the extreme C-terminal end of GluA4, which interacts with the membrane proximal region of the C-terminal domain to control GluA4 trafficking. In the absence of GluA4, strengthening of AMPAR-mediated transmission during postnatal development was significantly delayed. These data suggest that the GluA4-mediated activation of silent synapses is a critical mechanism facilitating the functional maturation of glutamatergic circuitry during the critical period of experience-dependent fine-tuning.