227 resultados para Neuropeptides.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To characterise central neurons in the pedal ganglia of both male and female green lipped mussel, Perna canaliculus immunohistochemical techniques were used. Mollusc antibodies were used against neuropeptides and neurotansmitters known to control reproduction and spawning. Anti-ELH and anti-APGWamide showed very strong immunoreactivity in small type of neurons. Anti-5-HT and anti-DA immunoreactivity was mostly in large type of neurons. The labelled neurons are consistent with descriptions of neurosecretory cells implicated in the control of reproduction and spawning on the basis of earlier histological staining techniques used in this species. The use of selective immunological markers for peptides and amines appears to be a, promising tool for further characterisation of neurosecretory cells, and to isolate an'tl characterise neuropeptides and other biologically active materials involved in the control of reproduction in Perna canaliculus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunohistochemical techniques were used to characterise central neurons in the cerebral ganglia of both male and female Perna canaliculus. We used mollusc antibodies raised against neuropeptides and neurotransmitters known to control reproduction and spawning. Anti-ELH and anti-APGWamide showed very strong immunoreactivity in small type of neurons. Anti-5-HT and anti-DA immunoreactivity was mostly in large type of neurons. The labelled neurons are consistent with descriptions of neurosecretory cells implicated in the control of reproduction and spawning on the basis of earlier histological staining techniques used in this species. The use of selective immunological markers for peptides and amines appears to be a promising tool for further characterisation of neurosecretory cells, and to isolate and characterise neuropeptides and other biologically active materials involved in the control of reproduction in Perna canaliculus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The phototherapy effects in the skin are related to biomodulation, usually to accelerate wound healing. However, there is no direct proof of the interrelation between the effects of low-level laser therapy (LLLT) and light-emitting diode (LED) in neuropeptide secretion, these substances being prematurely involved in the neurogenic inflammation phase of wound healing. This study therefore focused on investigating LLLT and LED in Calcitonin gene-related peptide (CGRP) and substance P (SP) secretion in healthy rat skin. Forty rats were randomly distributed into five groups with eight rats each: Control Group, Blue LED Group (470 nm, 350 mW power), Red LED Group (660 nm, 350 mW power), Red Laser Group (660 nm, 100 mW power), and Infrared Laser Group (808 nm, 100 mW power) (DMCA (R) Equipamentos Ltda., So Carlos, So Paulo, Brazil). the skin of the animals in the experimental groups was irradiated using the punctual contact technique, with a total energy of 40 J, single dose, standardized at one point in the dorsal region. After 14 min of irradiation, the skin samples were collected for CGRP and SP quantification using western blot analysis. SP was released in Infrared Laser Group (p = 0.01); there was no difference in the CGRP secretion among groups. Infrared (808 nm) LLLT enhances neuropeptide SP secretion in healthy rat skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Sensory neuropeptides have been suggested to play a role in the pathogenesis of a number of respiratory diseases including asthma and chronic non-productive cough.

OBJECTIVES: To investigate the action of sensory neuropeptides on airway mast cells obtained by bronchoalveolar lavage (BAL).

METHODS: BAL was performed on 23 nonasthmatic patients with cough (NAC), 11 patients with cough variant asthma (CVA) and 10 nonatopic controls. Washed lavage cells were stimulated (20 min, 37 degrees C) with calcitonin gene-related peptide (CGRP), neurokinin A (NKA) and substance P (25 and 50 micromol/L).

RESULTS: The neuropeptides tested induced histamine release in all groups studied. Only CGRP (50 micromol/L) induced significantly more histamine release from both NAC and CVA patients compared with control subjects (P = 0.038 and 0.045, respectively).

CONCLUSION: Regardless of aetiology, mast cells from patients with chronic cough appear to have an increased responsiveness to CGRP compared with controls. The results of the present study suggest that the role of CGRP in chronic cough should be further investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flatworm, nematode and arthropod parasites have proven their ability to develop resistance to currently available chemotherapeutics. The heavy reliance on chemotherapy and the ability of target species to develop resistance has prompted the search for novel drug targets. In view of its importance to parasite/pest survival, the neuromusculature of parasitic helminths and pest arthropod species remains an attractive target for the discovery Of novel endectocide targets. Exploitation of the neuropeptidergic system in helminths and arthropods has been hampered by a limited Understanding of the functional roles of individual peptides and the structure of endogenous targets, such as receptors. Basic research into these systems has the potential to facilitate target characterization and its offshoots (screen development and drug identification). Of particular interest to parasitologists is the fact that selected neuropeptide families are common to metazoan pest species (nematodes, platyhelminths and arthropods) and fulfil specific roles in the modulation of muscle function in each of the three phyla. This article reviews the inter-phyla activity of two peptide families, the FMRFamide-like peptides and allatostatins, on motor function in helminths and arthropods and discusses the potential of neuropeptide signalling as a target system that could uncover novel endectocidal agents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many neuropeptides are similar in size, amino acid composition and charge to antimicrobial peptides. This study aimed to determine whether the neuropeptides substance P (SP), neurokinin A (NKA), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP), displayed antimicrobial activity against Streptococcus mutans, Lactobacillus acidophilus, Enterococcus faecalis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. SP, NPY, VIP and CGRP displayed variable degrees of antimicrobial activity against all the pathogens tested with the exception of S. aureus. These antimicrobial activities add a further dimension to the immunomodulatory roles for neuropeptides in the inflammatory and immune responses. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract
INTRODUCTION:
Neuropeptides play an important role in inflammation and repair and have been implicated in mediating angiogenesis. Pulp fibroblasts express neuropeptide receptors, and the aim of this research was to investigate whether neuropeptides could regulate angiogenic growth factor expression in vitro
METHODS:
An angiogenic array was used to determine the levels of 10 angiogenic growth factors expressed by human pulp fibroblasts.
RESULTS:
Pulp fibroblasts were shown to express angiogenin, angiopoietin-2, epidermal growth factor, basic fibroblast growth factor, heparin-binding epidermal growth factor, hepatocyte growth factor, leptin, platelet-derived growth factor, placental growth factor, and vascular endothelial growth factor. Furthermore, the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, and neuropeptide Y altered angiogenic growth factor expression in vitro.
CONCLUSIONS:
The regulation of angiogenic growth factor expression by neuropeptides suggests a novel role for neuropeptides in pulpal inflammation and repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report the identification of a new family of helminth neuropeptides with members in both nematodes and flatworms, and include preliminary cell biological and functional characterisation of one of the peptides from the trematode parasite of humans, Schistosoma mansoni. Bioinformatics and Rapid Amplification of cDNA Ends (RACE)-PCR were used to identify the completes. mansoni neuropeptide precursor gene Sm-npp-1, which encodes three pentapeptides bearing the motif (A/G)FVR(I/L).NH2. Similar peptides were identified in three other flatworm species and in 15 nematode species. Quantitative PCR (qPCR) and immunocytochemical (ICC) analyses showed that Sm-npp-1 is constitutively expressed in larval and adult worms. ICC and confocal microscopy were employed to localise one of the schistosome NPP-1 peptides (GFVRIamide) in adult worms and schistosomules; antibodies labelled a pair of neurones in the cerebral ganglia that extend posteriorly along the main nerve cords. GFVRIamide displayed no detectable co-localisation with FMRFamide-like peptides (FLPs), nor was it detectable in muscle innervation. Exogenously applied peptide had a significant inhibitory effect on the mobility of whole adult worm pairs at 10(-5) M (n = 9). Finally, we explored Sm-npp-1 function in schistosomules using RNA interference (RNAi); we successfully achieved specific knockdown of the Sm-npp-1 transcript (54.46 +/- 10.41% knockdown, n = 3), but did not detect any clear, aberrant mobility or morphological phenotypes. NPP-1-like peptides are a new family of helminth peptides with a cell-specific expression pattern distinct from FLPs and a modulatory effect on schistosome muscular activity. (C) 2011 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historically, peptidergic substances (in the form of neurosecretions) were linked to moulting in nematodes. More recently, there has been a renewal of interest in nematode neurobiology, initially triggered by studies demonstrating the localization of peptide immunoreactivities to the nervous system. Here, David Brownlee, Ian Fairweather, Lindy Holden-Dye and Robert Walker will review progress on the isolation of nematode neuropeptides and efforts to unravel their physiological actions and inactivation mechanisms. Future avenues for research are suggested and the potential exploitation of peptidergic pathways in future therapeutic strategies highlighted.