912 resultados para Neuron-astrocyte trafficking
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It has been suggested that reduced astrocytic uptake of neuronally released glutamate contributes to the pathogenesis of hepatic encephalopathy in acute liver failure. In order to further address this issue, the recently cloned and sequenced astrocytic glutamate transporter GLT-1 was studied in brain preparations from rats with ischemic liver failure induced by portacaval anastomosis followed 24 h later by hepatic artery ligation and from appropriate sham-operated controls. GLT-1 expression was studied using reverse transcriptase-polymerase chain reaction (RT-PCR). Expression of GLT-1 transcript was significantly decreased in frontal cortex at coma stages of acute liver failure. Western blotting using a polyclonal antibody to GLT-1 revealed a concomitant decrease in expression of transporter protein in the brains of rats with acute liver failure. Reduced capacity of astrocytes to reuptake neuronally released glutamate, resulting from a GLT-1 transporter deficit and the consequently compromised neuron-astrocytic trafficking of glutamate could contribute to the pathogenesis of hepatic encephalopathy and brain edema, two major complications of acute liver failure.
Resumo:
Thy-1 is an abundant neuronal glycoprotein of poorly defined function. We recently provided evidence indicating that Thy-1 clusters a beta3-containing integrin in astrocytes to induce tyrosine phosphorylation, RhoA activation and the formation of focal adhesions and stress fibers. To date, the alpha subunit partner of beta3 integrin in DI TNC1 astrocytes is unknown. Similarly, the ability of neuronal, membrane-bound Thy-1 to trigger astrocyte signaling via integrin engagement remains speculation. Here, evidence that alphav forms an alphavbeta3 heterodimer in DI TNC1 astrocytes was obtained. In neuron-astrocyte association assays, the presence of either anti-alphav or anti-beta3 integrin antibodies reduced cell-cell interaction demonstrating the requirement of both integrin subunits for this association. Moreover, anti-Thy-1 antibodies blocked stimulation of astrocytes by neurons but not the binding of these two cell types. Thus, neuron-astrocyte association involved binding between molecular components in addition to the Thy-1-integrin; however, the signaling events leading to focal adhesion formation in astrocytes depended exclusively on the latter interaction. Additionally, wild-type (RLD) but not mutated (RLE) Thy-1 was shown to directly interact with alphavbeta3 integrin by Surface Plasmon Resonance analysis. This interaction was promoted by divalent cations and was species-independent. Together, these results demonstrate that the alphavbeta3 integrin heterodimer interacts directly with Thy-1 present on neuronal cells to stimulate astrocytes.
Resumo:
There is currently great scientific and medical interest in the potential of tissue grown from stem cells. These cells present opportunities for generating model systems for drug screening and toxicological testing which would be expected to be more relevant to human outcomes than animal based tissue preparations. Newly realised astrocytic roles in the brain have fundamental implications within the context of stem cell derived neuronal networks. If the aim of stem cell neuroscience is to generate functional neuronal networks that behave as networks do in the brain, then it becomes clear that we must include and understand all the cellular components that comprise that network, and which are important to support synaptic integrity and cell to cell signalling. We have shown that stem cell derived neurons exhibit spontaneous and coordinated calcium elevations in clusters and in extended processes, indicating local and long distance signalling (1). Tetrodotoxin sensitive network activity could also be evoked by electrical stimulation. Similarly, astrocytes exhibit morphology and functional properties consistent with this glial cell type. Astrocytes also respond to neuronal activity and to exogenously applied neurotransmitters with calcium elevations, and in contrast to neurons, also exhibited spontaneous rhythmic calcium oscillations. Astroctyes also generate propagating calcium waves that are gap junction and purinergic signalling dependent. Our results show that stem cell derived astrocytes exhibit appropriate functionality and that stem cell neuronal networks interact with astrocytic networks in co-culture. Using mixed cultures of stem cell derived neurons and astrocytes, we have also shown both cell types also modulate their glucose uptake, glycogen turnover and lactate production in response to glutamate as well as increased neuronal activity (2). This finding is consistent with their neuron-astrocyte metabolic coupling thus demonstrating a tractable human model, which will facilitate the study of the metabolic coupling between neurons and astrocytes and its relationship with CNS functional issues ranging from plasticity to neurodegeneration. Indeed, cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose (3). Both co-cultures of neurons and astrocytes and purified cultures of astrocytes showed a significant decrease in glucose uptake after treatment with 2 and 0.2 μmol/L Aβ at all time points investigated (p <0.01). In addition, a significant increase in the glycogen content of cells was also measured. Mixed neuron and astrocyte co-cultures as well as pure astrocyte cultures showed an initial decrease in glycogen levels at 6 hours compared with control at 0.2 μmol/L and 2 μmol/L P <0.01. These changes were accompanied by changes in NAD+/NADH (P<0.05), ATP (P<0.05), and glutathione levels (P<0.05), suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. As numerous cell types interact in the brain it is important that any in vitro model developed reflects this arrangement. Our findings indicate that stem cell derived neuron and astrocyte networks can communicate, and so have the potential to interact in a tripartite manner as is seen in vivo. This study therefore lays the foundation for further development of stem cell derived neurons and astrocytes into therapeutic cell replacement and human toxicology/disease models. More recently our data provides evidence for a detrimental effect of Aβ on carbohydrate metabolism in both neurons and astrocytes. As a purely in vitro system, human stem cell models can be readily manipulated and maintained in culture for a period of months without the use of animals. In our laboratory cultures can be maintained in culture for up to 12 months months thus providing the opportunity to study the consequences of these changes over extended periods of time relevant to aspects of the disease progression time frame in vivo. In addition, their human origin provides a more realistic in vitro model as well as informing other human in vitro models such as patient-derived iPSC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Voltage-gated sodium channels (VGSCs) play an important role in neuronal excitability. Regulation of VGSC activity is a complex phenomenon that occurs at multiple levels in the cell, including transcriptional regulation, post-translational modification and membrane insertion and retrieval. Multiple VGSC subtypes exist that vary in their biophysical and pharmacological properties and tissue distribution. Any alteration of the VGSC subtype profile of a neuron or the mechanisms that regulate VGSC activity can cause significant changes in neuronal excitability. Inflammatory and neuropathic pain states are characterised by alterations in VGSC subtype composition and activity in sensory neurons. This review focuses on the VGSC subtypes involved in such pain states. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Information processing in the human brain has always been considered as a source of inspiration in Artificial Intelligence; in particular, it has led researchers to develop different tools such as artificial neural networks. Recent findings in Neurophysiology provide evidence that not only neurons but also isolated and networks of astrocytes are responsible for processing information in the human brain. Artificial neural net- works (ANNs) model neuron-neuron communications. Artificial neuron-glia networks (ANGN), in addition to neuron-neuron communications, model neuron-astrocyte con- nections. In continuation of the research on ANGNs, first we propose, and evaluate a model of adaptive neuro fuzzy inference systems augmented with artificial astrocytes. Then, we propose a model of ANGNs that captures the communications of astrocytes in the brain; in this model, a network of artificial astrocytes are implemented on top of a typical neural network. The results of the implementation of both networks show that on certain combinations of parameter values specifying astrocytes and their con- nections, the new networks outperform typical neural networks. This research opens a range of possibilities for future work on designing more powerful architectures of artificial neural networks that are based on more realistic models of the human brain.
Resumo:
In the Ventrobasal (VB) thalamus, astrocytes are known to elicit NMDA-receptor mediated slow inward currents (SICs) spontaneously in neurons. Fluorescence imaging of astrocytes and patch clamp recordings from the thalamocortical (TC) neurons in the VB of 6-23 day old Wistar rats were performed. TC neurons exhibit spontaneous SICs at low frequencies (~0.0015Hz) that were inhibited by NMDA-receptor antagonists D-AP5 (50µM), and were insensitive to TTX (1µM) suggesting a non-neuronal origin. The effect of corticothalamic (CT) and sensory (Sen) afferent stimulation on astrocyte signalling was assessed by varying stimulus parameters. Moderate synaptic stimulation elicited astrocytic Ca2+ increases, but did not affect the incidence of spontaneous SICs. Prolonged synaptic stimulation induced a 265% increase in SIC frequency. This increase lasted over one hour after the cessation of synaptic stimulation, so revealing a Long Term Enhancement (LTE) of astrocyte-neuron signalling. LTE induction required group I mGluR activation. LTE SICs targeted NMDA-receptors located at extrasynaptic sites. LTE showed a developmental profile: from weeks 1-3, the SIC frequency was increased by an average 50%, 240% and 750% respectively. Prolonged exposure to glutamate (200µM) increased spontaneous SIC frequency by 1800%. This “chemical” form of LTE was prevented by the broad-spectrum excitatory amino acid transporter (EAAT) inhibitor TBOA (300µM) suggesting that glutamate uptake was a critical factor. My results therefore show complex glutamatergic signalling interactions between astrocytes and neurons. Furthermore, two previously unrecognised mechanisms of enhancing SIC frequency are described. The synaptically induced LTE represents a form of non-synaptic plasticity and a glial “memory” of previous synaptic activity whilst enhancement after prolonged glutamate exposure may represent a pathological glial signalling mechanism.
Resumo:
The NT2.D1 cell line is one of the most well-documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of the neuronal cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time that human stem cell-derived astrocytes produce glycogen and that co-cultures of these cells demonstrate a functional astrocyte-neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake, which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2-derived neurons and astrocytes, we have shown that these cells modulate their glucose uptake in response to glutamate. Additionally, we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown after treatment with glutamate, potassium, isoproterenol, and dbcAMP. Together, these results demonstrate for the first time a functional ANLS in a human stem cell-derived co-culture. © 2013 ISCBFM.
Resumo:
Alzheimer’s Disease (AD) is the most common form of dementia currently affecting more than 35 million people worldwide. Hypometabolism is a major feature of AD and appears decades before cognitive decline and pathological lesions. This has a detrimental impact on the brain which has a high energy demand. Current models of AD fail to mimic all the features of the disease, which has an impact on the development of new therapies. Human stem cell derived models of the brain have attracted a lot of attention in recent years as a tool to study neurodegenerative diseases. In this thesis, neurons and astrocytes derived from the human embryonal carcinoma cell line (NT2/D1) were utilised to determine the metabolic coupling between neurons and astrocytes with regards to responses to hypoglycaemia, neuromodulators and increase in neuronal activity. This model was then used to investigate the effects of Aß(1-42) on the metabolism of these NT2-derived co-cultures as well as pure astrocytes. Additionally primary cortical mixed neuronal and glial cultures were utilised to compare this model to a widely accepted in vitro model used in Alzheimer’s disease research. Co-cultures were found to respond to Aß(1-42) in similar way to human and in vivo models. Hypometabolism was characterised by changes in glucose metabolism, as well as lactate, pyruvate and glycogen. This led to a significant decrease in ATP and the ratio of NAD+/NADH. These results together with an increase in calcium oscillations and a decrease in GSH/GSSG ratio, suggests Aß-induces metabolic and oxidative stress. This situation could have detrimental effects in the brain which has a high energy demand, especially in terms of memory formation and antioxidant capacity.
Resumo:
Alzheimer's disease (AD) is the most common form of dementia, affecting more than 35 million people worldwide. Brain hypometabolism is a major feature of AD, appearing decades before cognitive decline and pathologic lesions. To date, the majority of studies on hypometabolism in AD have used transgenic animal models or imaging studies of the human brain. As it is almost impossible to validate these findings using human tissue, alternative models are required. In this study, we show that human stem cell-derived neuron and astrocyte cultures treated with oligomers of amyloid beta 1-42 (Aβ1-42) also display a clear hypometabolism, particularly with regard to utilization of substrates such as glucose, pyruvate, lactate, and glutamate. In addition, a significant increase in the glycogen content of cells was also observed. These changes were accompanied by changes in NAD+ /NADH, ATP, and glutathione levels, suggesting a disruption in the energy-redox axis within these cultures. The high energy demands associated with neuronal functions such as memory formation and protection from oxidative stress put these cells at particular risk from Aβ-induced hypometabolism. Further research using this model may elucidate the mechanisms associated with Aβ-induced hypometabolism.
Resumo:
The development of stem cell-derived neuronal networks will promote experimental system development for drug screening, toxicological testing and disease modelling, providing that they mirror closely the functional competencies of their in vivo counterparts. The NT2 cell line is one of the best documented embryocarcinoma cell lines, and can be differentiated into neurons and astrocytes. Great focus has also been placed on defining the electrophysiological properties of these cells, and more recently we have investigated the functional properties of their associated astrocytes. We now show for the first time in a human stem cell derived co-culture model that these cultures are also metabolically competent and demonstrate a functional astrocyte neuron lactate shuttle (ANLS). The ANLS hypothesis proposes that during neuronal activity, glutamate released into the synaptic cleft is taken up by astrocytes and triggers glucose uptake which is converted into lactate and released via monocarboxylate transporters for neuronal use. Using mixed cultures of NT2 derived neurons and astrocytes we have shown that these cells modulate their glucose uptake in response to glutamate, an effect that was blocked by cytochalasin B and ouabain. Additionally we demonstrate that in response to increased neuronal activity and under hypoglycaemic conditions, co-cultures modulate glycogen turnover and increase lactate production. Similar results were also shown following treatment with glutamate, potassium, Isoproterenol and dbcAMP. Together these results demonstrate for the first time a functional ANLS in a human stem cell derived co-culture.
Resumo:
Astrocytes in neuron-free cultures typically lack processes, although they are highly process-bearing in vivo. We show that basic fibroblast growth factor (bFGF) induces cultured astrocytes to grow processes and that Ras family GTPases mediate these morphological changes. Activated alleles of rac1 and rhoA blocked and reversed bFGF effects when introduced into astrocytes in dissociated culture and in brain slices using recombinant adenoviruses. By contrast, dominant negative (DN) alleles of both GTPases mimicked bFGF effects. A DN allele of Ha-ras blocked bFGF effects but not those of Rac1-DN or RhoA-DN. Our results show that bFGF acting through c-Ha-Ras inhibits endogenous Rac1 and RhoA GTPases thereby triggering astrocyte process growth, and they provide evidence for the regulation of this cascade in vivo by a yet undetermined neuron-derived factor.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
This book is one of a series on contemporary social issues. It provides a painstakingly researched analysis of the contemporary phenomenon of sex trafficking. As the author Kathryn Farr points out, the phenomenon is not all that contemporary, as women and children have historically been trafficked and enslaved for the purposes of prostitution, particularly during war: in World War II on the southern islands of Okinawa, the Philippines, Hawaii, Liberia, Japan, the Korean war, the Vietnam war, and more recently in Bosnia and Rwanda. Farr links the phenomenon to military socialization, especially to its patriarchal culture which celebrates hyper-masculinity, eroticizes violence, desensitizes soldiers to suffering and brutality and treats women as sex objects.