973 resultados para Neurokinin-1 receptors


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protective roles for protease-activated receptor-2 (PAR2) in the airways including activation of epithelial chloride (Cl-) secretion are based on the use of presumably PAR(2)-selective peptide agonists. To determine whether PAR(2) peptide-activated Cl- secretion from mouse tracheal epithelium is dependent on PAR(2), changes in ion conductance across the epithelium [short-circuit current (I-SC)] to PAR(2) peptides were measured in Ussing chambers under voltage clamp. In addition, epithelium and endothelium-dependent relaxations to these peptides were measured in two established PAR(2) bioassays, isolated ring segments of mouse trachea and rat thoracic aorta, respectively. Apical application of the PAR(2) peptide SLIGRL caused increases in I-SC, which were inhibited by three structurally different neurokinin receptor-1 (NK1R) antagonists and inhibitors of Cl- channels but not by capsaicin, the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37), or the nonselective cyclooxygenase inhibitor indomethacin. Only high concentrations of trypsin caused an increase in I-SC but did not affect the responses to SLIGRL. Relaxations to SLIGRL in the trachea and aorta were unaffected by the NK1R antagonist nolpitantium (SR 140333) but were abolished by trypsin desensitization. The rank order of potency for a range of peptides in the trachea I-SC assay was 2-furoyl-LIGRL > SLCGRL > SLIGRL > SLIGRT > LSIGRL compared with 2-furoyl-LIGRL > SLIGRL > SLIGRT > SLCGRL (LSIGRL inactive) in the aorta relaxation assay. In the mouse trachea, PAR(2) peptides activate both epithelial NK1R coupled to Cl- secretion and PAR(2) coupled to prostaglandin E-2-mediated smooth muscle relaxation. Such a potential lack of specificity of these commonly used peptides needs to be considered when roles for PAR(2) in airway function in health and disease are determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We assessed the role of NK-1 receptors (NK1R) expressing neurons in the locus coeruleus (LC) on cardiorespiratory responses to hypercapnia. To this end, we injected substance P-saporin conjugate (SP-SAP) to kill NK-1 immunoreactive (NK1R-ir) neurons or SAP alone as a control. Immunohistochemistry for NK1R, tyrosine hydroxylase (TH-ir) and Glutamic Acid Decarboxylase (GAD-ir) were performed to verify if NK1R-expressing neurons, catecholaminergic and/or GABAergic neurons were eliminated. A reduced NK1R-ir in the LC (72%) showed the effectiveness of the lesion. SP-SAP lesion also caused a reduction of TH-ir (66%) and GABAergic neurons (70%). LC SP-SAP lesion decreased by 30% the ventilatory response to 7% CO(2) and increased the heart rate (fH) during hypercapnia but did not affect MAP. The present data suggest that different populations of neurons (noradrenergic, GABAergic, and possibly others) in the LC express NK1R modulating differentially the hypercapnic ventilatory response, since catecholaminergic neurons are excitatory and GABAergic ones are inhibitory. Additionally, NK1R-ir neurons in the LC, probably GABAergic ones, seem to modulate fH during CO(2) exposure, once our previous data demonstrated that catecholaminergic lesion does not affect this variable. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuropeptide signalling at the plasma membrane is terminated by neuropeptide degradation by cell-surface peptidases, and by beta-arrestin-dependent receptor desensitization and endocytosis. However, receptors continue to signal from endosomes by beta-arrestin-dependent processes, and endosomal sorting mediates recycling and resensitization of plasma membrane signalling. The mechanisms that control signalling and trafficking of receptors in endosomes are poorly defined. We report a major role for endothelin-converting enzyme-1 (ECE-1) in controlling substance P (SP) and the neurokinin 1 receptor (NK(1)R) in endosomes of myenteric neurones. ECE-1 mRNA and protein were expressed by myenteric neurones of rat and mouse intestine. SP (10 nM, 10 min) induced interaction of NK(1)R and beta-arrestin at the plasma membrane, and the SP-NK(1)R-beta-arrestin signalosome complex trafficked by a dynamin-mediated mechanism to ECE-1-containing early endosomes, where ECE-1 can degrade SP. After 120 min, NK(1)R recycled from endosomes to the plasma membrane. ECE-1 inhibitors (SM-19712, PD-069185) and the vacuolar H(+)ATPase inhibitor bafilomycin A(1), which prevent endosomal SP degradation, suppressed NK(1)R recycling by >50%. Preincubation of neurones with SP (10 nM, 5 min) desensitized Ca(2+) transients to a second SP challenge after 10 min, and SP signals resensitized after 60 min. SM-19712 inhibited NK(1)R resensitization by >90%. ECE-1 inhibitors also caused sustained SP-induced activation of extracellular signal-regulated kinases, consistent with stabilization of the SP-NK(1)R-beta-arrestin signalosome. By degrading SP and destabilizing endosomal signalosomes, ECE-1 has a dual role in controlling endocytic signalling and trafficking of the NK(1)R: promoting resensitization of G protein-mediated plasma membrane signalling, and terminating beta-arrestin-mediated endosomal signalling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activated G protein-coupled receptors (GPCRs) are phosphorylated and interact with beta-arrestins, which mediate desensitization and endocytosis. Endothelin-converting enzyme-1 (ECE-1) degrades neuropeptides in endosomes and can promote recycling. Although endocytosis, dephosphorylation, and recycling are accepted mechanisms of receptor resensitization, a large proportion of desensitized receptors can remain at the cell surface. We investigated whether reactivation of noninternalized, desensitized (phosphorylated) receptors mediates resensitization of the substance P (SP) neurokinin 1 receptor (NK(1)R). Herein, we report a novel mechanism of resensitization by which protein phosphatase 2A (PP2A) is recruited to dephosphorylate noninternalized NK(1)R. A desensitizing concentration of SP reduced cell-surface SP binding sites by only 25%, and SP-induced Ca(2+) signals were fully resensitized before cell-surface binding sites started to recover, suggesting resensitization of cell-surface-retained NK(1)R. SP induced association of beta-arrestin1 and PP2A with noninternalized NK(1)R. beta-Arrestin1 small interfering RNA knockdown prevented SP-induced association of cell-surface NK(1)R with PP2A, indicating that beta-arrestin1 mediates this interaction. ECE-1 inhibition, by trapping beta-arrestin1 in endosomes, also impeded SP-induced association of cell-surface NK(1)R with PP2A. Resensitization of NK(1)R signaling required both PP2A and ECE-1 activity. Thus, after stimulation with SP, PP2A interacts with noninternalized NK(1)R and mediates resensitization. PP2A interaction with NK(1)R requires beta-arrestin1. ECE-1 promotes this process by releasing beta-arrestin1 from NK(1)R in endosomes. These findings represent a novel mechanism of PP2A- and ECE-1-dependent resensitization of GPCRs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: The metalloendopeptidase endothelin-converting enzyme 1 (ECE-1) is prominently expressed in the endothelium where it converts big endothelin to endothelin-1, a vasoconstrictor peptide. Although ECE-1 is found in endosomes in endothelial cells, the role of endosomal ECE-1 is unclear. ECE-1 degrades the pro-inflammatory neuropeptide substance P (SP) in endosomes to promote recycling and re-sensitization of its neurokinin 1 (NK(1)) receptor. We investigated whether ECE-1 regulates NK(1) receptor re-sensitization and the pro-inflammatory effects of SP in the endothelium. EXPERIMENTAL APPROACH: We examined ECE-1 expression, SP trafficking and NK(1) receptor re-sensitization in human microvascular endothelial cells (HMEC-1), and investigated re-sensitization of SP-induced plasma extravasation in rats. KEY RESULTS: HMEC-1 expressed all four ECE-1 isoforms (a-d), and fluorescent SP trafficked to early endosomes containing ECE-1b/d. The ECE-1 inhibitor SM-19712 prevented re-sensitization of SP-induced Ca2+ signals in HMEC-1 cells. Immunoreactive ECE-1 and NK(1) receptors co-localized in microvascular endothelial cells in the rat. SP-induced extravasation of Evans blue in the urinary bladder, skin and ears of the rat desensitized when the interval between two SP injections was 10 min, and re-sensitized after 480 min. SM-19712 inhibited this re-sensitization. CONCLUSIONS AND IMPLICATIONS: By degrading endocytosed SP, ECE-1 promotes the recycling and re-sensitization of NK(1) receptors in endothelial cells, and thereby induces re-sensitization of the pro-inflammatory effects of SP. Thus, ECE-1 inhibitors may ameliorate the pro-inflammatory actions of SP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient stimulation with substance P (SP) induces endocytosis and recycling of the neurokinin-1 receptor (NK(1)R). The effects of sustained stimulation by high concentrations of SP on NK(1)R trafficking and Ca(2+) signaling, as may occur during chronic inflammation and pain, are unknown. Chronic exposure to SP (100 nm, 3 h) completely desensitized Ca(2+) signaling by wild-type NK(1)R (NK(1)Rwt). Resensitization occurred after 16 h, and cycloheximide prevented resensitization, implicating new receptor synthesis. Lysine ubiquitination of G-protein-coupled receptors is a signal for their trafficking and degradation. Lysine-deficient mutant receptors (NK(1)RDelta5K/R, C-terminal tail lysines; and NK(1)RDelta10K/R, all intracellular lysines) were expressed at the plasma membrane and were functional because they responded to SP by endocytosis and by mobilization of Ca(2+) ions. SP desensitized NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. However, NK(1)RDelta5K/R and NK(1)RDelta10K/R resensitized 4-8-fold faster than NK(1)Rwt by cycloheximide-independent mechanisms. NK(1)RDelta325 (a naturally occurring truncated variant) showed incomplete desensitization, followed by a marked sensitization of signaling. Upon labeling receptors in living cells using antibodies to extracellular epitopes, we observed that SP induced endocytosis of NK(1)Rwt, NK(1)RDelta5K/R, and NK(1)RDelta10K/R. After 4 h in SP-free medium, NK(1)RDelta5K/R and NK(1)RDelta10K/R recycled to the plasma membrane, whereas NK(1)Rwt remained internalized. SP induced ubiquitination of NK(1)Rwt and NK(1)RDelta5K/R as determined by immunoprecipitation under nondenaturing and denaturing conditions and detected with antibodies for mono- and polyubiquitin. NK(1)RDelta10K/R was not ubiquitinated. Whereas SP induced degradation of NK(1)Rwt, NK(1)RDelta5K/R and NK(1)RDelta10K/R showed approximately 50% diminished degradation. Thus, chronic stimulation with SP induces ubiquitination of the NK(1)R, which mediates its degradation and down-regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder pain syndrome (BPS) is a clinical syndrome of pelvic pain and urinary urgency-frequency in the absence of a specific cause. Investigating the expression levels of genes involved in the regulation of epithelial permeability, bladder contractility, and inflammation, we show that neurokinin (NK)1 and NK2 tachykinin receptors were significantly down-regulated in BPS patients. Tight junction proteins zona occludens-1, junctional adherins molecule -1, and occludin were similarly down-regulated, implicating increased urothelial permeability, whereas bradykinin B(1) receptor, cannabinoid receptor CB1 and muscarinic receptors M3-M5 were up-regulated. Using cell-based models, we show that prolonged exposure of NK1R to substance P caused a decrease of NK1R mRNA levels and a concomitant increase of regulatory micro(mi)RNAs miR-449b and miR-500. In the biopsies of BPS patients, the same miRNAs were significantly increased, suggesting that BPS promotes an attenuation of NK1R synthesis via activation of specific miRNAs. We confirm this hypothesis by identifying 31 differentially expressed miRNAs in BPS patients and demonstrate a direct correlation between miR-449b, miR-500, miR-328, and miR-320 and a down-regulation of NK1R mRNA and/or protein levels. Our findings further the knowledge of the molecular mechanisms of BPS, and have relevance for other clinical conditions involving the NK1 receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Endometriosis is characterized by the growth of ectopic endometrial tissue. Nerve fibers are frequently associated with ectopic lesions, and neurogenic inflammation may play a role in endometriosis. Objective: The purpose of this study was to determine the presence of tachykinin receptors in endometriotic lesions and the role of TNFα on their expression. Design: This study was an assessment of matching eutopic and ectopic endometrial tissue and peritoneal fluid from patients with endometriosis and an in vitro analysis of primary endometrial cells. Setting: The setting was a university hospital. Patients: Participants were premenopausal women undergoing laparoscopy. Interventions: Endometriotic lesions were removed surgically. Main Outcome Measures: Tachykinin mRNA (TACR1/2) and protein (neurokinin 1 receptor [NK1R]) expression in both eutopic and ectopic endometrial tissue from patients with endometriosis and the correlation to peritoneal fluid TNFα were measured. Primary endometrial epithelial and stromal cells were assessed in vitro to determine the induction of TACR1/2 and NK1R expression after TNFα treatment. Cell viability of endometrial stromal cells after substance P exposure was also assessed. Results: Expression of both TACR1 and TACR2 mRNA was significantly higher in the ectopic than in the eutopic tissue. Both TACR1 mRNA and NK1R protein expression was significantly correlated with peritoneal fluid TNFα, and in vitro studies confirmed that TNFα treatment induced both TACR1 mRNA and NK1R protein expression in endometrial stromal cells. In endometrial stromal cells, substance P treatment enhanced cell viability, which was inhibited by a specific NK1R antagonist. Conclusions: NK1R expression is induced in ectopic endometrial tissue by peritoneal TNFα. Induction of NK1R expression may permit endometriotic lesion maintenance via exposure to substance P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two isoforms of the substance P (SP) receptor, differing in the length of the cytoplasmic carboxyl-terminus by ≈8 kDa, have been detected previously in rat salivary glands and other tissues. The binding and functional properties of these two isoforms have been investigated using full-length (407 amino acids) and carboxyl-terminally truncated (324 amino acids) rat SP receptors transfected stably into Chinese hamster ovary cells. Both the full-length and the truncated receptor bound radiolabeled SP with a similar Kd (≈0.1 nM). The average number of high affinity SP binding sites per cell was 1.0 × 105 and 0.3 × 105 for the full-length and the truncated SP receptor, respectively. In both cell lines, SP induced a rapid but transient increase in cytosolic calcium concentration ([Ca2+]i), which consisted of the release of Ca2+ from intracellular stores and the influx of extracellular Ca2+. Both components are dependent on phospholipase C activation. Although the full-length and the truncated receptor utilize the same calcium pathways, they differ in their EC50 values (0.28 nM for the full-length; 0.07 nM for the truncated). These differences in responsiveness may be related to the observed differences in receptor desensitization. The truncated receptor, in contrast to the full-length receptor, does not undergo rapid and long-lasting desensitization. Cells possessing the short isoform of the SP receptor would thus be expected to exhibit a prolonged responsiveness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Observations in reconstituted systems and transfected cells indicate that G-protein receptor kinases (GRKs) and β-arrestins mediate desensitization and endocytosis of G-protein–coupled receptors. Little is known about receptor regulation in neurons. Therefore, we examined the effects of the neurotransmitter substance P (SP) on desensitization of the neurokinin-1 receptor (NK1-R) and on the subcellular distribution of NK1-R, Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in cultured myenteric neurons. NK1-R was coexpressed with immunoreactive Gαq/11, GRK-2 and -3, and β-arrestin-1 and -2 in a subpopulation of neurons. SP caused 1) rapid NK1-R–mediated increase in [Ca2+]i, which was transient and desensitized to repeated stimulation; 2) internalization of the NK1-R into early endosomes containing SP; and 3) rapid and transient redistribution of β-arrestin-1 and -2 from the cytosol to the plasma membrane, followed by a striking redistribution of β-arrestin-1 and -2 to endosomes containing the NK1-R and SP. In SP-treated neurons Gαq/11 remained at the plasma membrane, and GRK-2 and -3 remained in centrally located and superficial vesicles. Thus, SP induces desensitization and endocytosis of the NK1-R in neurons that may be mediated by GRK-2 and -3 and β-arrestin-1 and -2. This regulation will determine whether NK1-R–expressing neurons participate in functionally important reflexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: The effects of centrally administered cannabinoids on body core temperature (Tc) and the contribution of endogenous cannabinoids to thermoregulation and fever induced by lipopolysaccharide (LPS) (Sigma Chem. Co., St. Louis, MO, USA) were investigated. Experimental approach: Drug-induced changes in Tc of male Wistar rats were recorded over 6 h using a thermistor probe (Yellow Springs Instruments 402, Dayton, OH, USA) inserted into the rectum. Key results: Injection of anandamide [(arachidonoylethanolamide (AEA); Tocris, Ellisville, MO, USA], 0.01-1 mu g i.c.v. or 0.1-100 ng intra-hypothalamic (i.h.), induced graded increases in Tc (peaks 1.5 and 1.6 degrees C at 4 h after 1 mu g i.c.v. or 10 ng i.h.). The effect of AEA (1 mu g, i.c.v.) was preceded by decreases in tail skin temperature and heat loss index (values at 1.5 h: vehicle 0.62, AEA 0.48). Bell-shaped curves were obtained for the increase in Tc induced by the fatty acid amide hydrolase inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (Cayman Chemical Co., Ann Arbor, MI, USA) (0.001-1 ng i.c.v.; peak 1.9 degrees C at 5 h after 0.1 ng) and arachidonyl-2-chloroethylamide (ACEA; Tocris) (selective CB(1) agonist; 0.001-1 mu g i.c.v.; peak 1.4 degrees C 5 h after 0.01 mu g), but (R,S)-(+)-(2-Iodo-5-nitrobenzoyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indole-3-yl] methanone (Tocris) (selective CB(2) agonist) had no effect on Tc. AEA-induced fever was unaffected by i.c.v. pretreatment with 6-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indole-3-yl](4-methoxyphenyl) methanone (Tocris) (selective CB(2) antagonist), but reduced by i.c.v. pretreatment with N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251; Tocris) (selective CB(1) antagonist). AM251 also reduced the fever induced by ACEA or LPS. Conclusions and implications: The endogenous cannabinoid AEA induces an integrated febrile response through activation of CB(1) receptors. Endocannabinoids participate in the development of the febrile response to LPS constituting a target for antipyretic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substance P (SP) is a neuropeptide that can modulate inflammatory mediator release through activation of NK(1) receptors (NK(1)R). Some studies have also suggested the involvement of SP in lipopolysaccharide (LPS)-induced fever. However, the precise contribution of this neuropeptide to the pathways activated during fever is unknown. In this study we investigated the effect of a selective NK(1)R antagonist, SR140333B, on the febrile response induced by LPS and cytokines. Our results show that the systemic injection of SR140333B did not modify the fever induced by LPS at a dose that is able to reduce protein extravasation induced by SP in the skin. On the other hand, intracerebroventricular administration of 5R140333B significantly reduced the fever induced by peripheral injection of LPS. These data emphasize an important role for SP in the central nervous system during the febrile response to LPS, and are reinforced by the fact that intracerebroventricular injection of SP also induced fever in a dose-dependent manner in captopril-treated rats. Considering that the febrile response can result from the generation of several endogenous pyrogens, among them interleukin (IL)-1 beta and macrophage inflammatory protein-1 alpha (CCL3/MIP-1 alpha), we also examined the effect of SR140333B on the fever induced by these cytokines which act through prostaglandin-dependent and independent mechanisms, respectively. Surprisingly, SR140333B did not modify the febrile response to IL-1 beta or CCL3/MIP-1 alpha. Altogether these data suggest that the central action of SP is essential for LPS-, but not for IL-1 beta- or CCL3/MIP-1 alpha-induced fever. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ventral portion of the medial prefrontal cortex (vMPFC) has been related to the expression of contextual fear conditioning. This study investigated the possible involvement of CB(1) receptors in this aversive response. Male Wistar rats were submitted to a contextual aversive conditioning session and 48 h later re-exposed to the aversive context in which freezing and cardiovascular responses (increase of arterial pressure and heart rate) were recorded. The expression of CB(1) receptor-mRNA in the vMPFC was also measured using real time-PCR. In the first experiment intra-vMPFC administration of the CB(1) receptor agonist anandamide (AEA, 5 pmol/200 nl) or the AEA transport inhibitor AM404 (50 pmol/200 nl) prior to re-exposure to the aversive context attenuated the fear-conditioned responses. These effects were prevented by local pretreatment with the CB(1) receptor antagonist AM251 (100 pmol/200 nl). Using the same conditioning protocol in another animal group, we observed that CB(1) receptor mRNA expression increased in the vMPFC 48 h after the conditioning session. Although AM251 did not cause any effect by itself in the first experiment, this drug facilitated freezing and cardiovascular responses when the conditioning session employed a lesser aversive condition. These results indicated that facilitation of cannabinoid-mediated neurotransmission in the vMPFC by local CB(1) receptor activation attenuates the expression of contextual fear responses. Together they suggest that local endocannabinoid-mediated neurotransmission in the vMPFC can modulate these responses.