974 resultados para Neural-tube Defects
Resumo:
Committees worldwide have set almost identical folate recommendations for the prevention of the first occurrence of neural tube defects (NTDs). We evaluate these recommendations by reviewing the results of intervention studies that examined the response of red blood cell folate to altered folate intake. Three options are suggested to achieve the extra 400 mu g folic acid/d being recommended by the official committees: increased intake of folate-rich foods, dietary folic acid supplementation, and folic acid fortification of food. A significant increase in foods naturally rich in folates was shown to be a relatively ineffective means of increasing red blood cell folate status in women compared with equivalent intakes of folic acid-fortified food, presumably because the synthetic form of the vitamin is more stable and more bioavailable. Although folic acid supplements are highly effective in optimizing folate status, supplementation is not an effective strategy for the primary prevention of NTDs because of poor compliance. Thus, food fortification is seen by many as the only option likely to succeed. Mandatory folic acid fortification of grain products was introduced recently in the United States at a level projected to provide an additional mean intake of 100 mu g folic acid/d, but some feel that this policy does not go far enough. A recent clinical trial predicted that the additional intake of folic acid in the United States will reduce NTDs by >20%, whereas 200 mu g/d would be highly protective and is the dose also shown to be optimal in lowering plasma homocysteine, with possible benefits in preventing cardiovascular disease. Thus, an amount lower than the current target of an extra 400 mu g/d may be sufficient to increase red blood cell folate to concentrations associated with the lowest risk of NTDs, but further investigation is warranted to establish the optimal amount.
Resumo:
Background: Mandatory fortification of grain products with folic acid was introduced recently in the United States, a policy expected to result in a mean additional intake of 100 mu g/d. One way of predicting the effectiveness of this measure is to determine the effect of removing a similar amount of folic acid as fortified food from the diets of young women who had been electively exposed to chronic fortification.
Objective: The objective was to examine the effect on folate status of foods fortified with low amounts of folic acid.
Design: We investigated the changes in dietary intakes and in red blood cell and serum concentrations of folate in response to removing folic acid-fortified foods for 12 wk from the diets of women who reportedly consumed such foods at least once weekly (consumers).
Results: Consumers (n = 21) had higher total folate intakes (P = 0.002) and red blood cell folate concentrations (P = 0.023) than nonconsumers (women who consumed folic acid-fortified foods less than once weekly; n = 30). Of greater interest, a 12-wk intervention involving the exclusion of these foods resulted in a decrease in folate intake of 78 +/- 56 mu g/d (P < 0.001), which was reflected in a significant reduction in red blood cell folate concentrations (P < 0.05).
Conclusions: Cessation of eating folic acid-fortified foods resulted in removing 78 mu g folic acid/d from the diet. Over 12 wk this resulted in a lowering of red blood cell folate concentrations by 111 nmol/L (49 mu g/L). This magnitude of change in folate status in women can be anticipated as a result of the new US fortification legislation and is predicted to have a significant, although not optimal, effect in preventing neural tube defects.
Resumo:
Background Recommendations by the UK Department of Health suggest that protection from neural tube defects (NTD) can be achieved through intakes of an extra 400 mu g daily of folate/folic acid as natural food, foods fortified with folic acid, or supplements. The assumption is that all three routes of intervention would have equal effects on folate status.
Methods We assessed the effectiveness of these suggested routes of intervention in optimising folate status. 62 women were recruited from the University staff and students to take part in a 3-month intervention study. Participants were randomly assigned to one of the following five groups: folic acid supplement (400 mu g/day; I); folic-acid-fortified foods (an additional 400 mu g/day; II); dietary folate (an additional 400 mu g/day; III); dietary advice (IV), and control (V). Responses to intervention were assessed as changes in red-cell folate between preintervention and postintervention values.
Findings 41 women completed the intervention study. Red-cell folate concentrations increased significantly over the 3 months in the groups taking folic acid supplements (group I) or food fortified with folic acid (group II) only (p<0.01 for both groups). By contrast, although aggressive intervention with dietary folate (group III) or dietary advice (group IV) significantly increased intake of food folate (p<0.001 and p<0.05, respectively), there was no significant change in folate status.
Interpretation We have shown that compared with supplements and fortified food, consumption of extra folate as natural food folate is relatively ineffective at increasing folate status. We believe that advice to women to consume folate-rich foods as a means to optimise folate status is misleading.
Resumo:
Les anomalies du tube neural (ATN) sont des anomalies développementales où le tube neural reste ouvert (1-2/1000 naissances). Afin de prévenir cette maladie, une connaissance accrue des processus moléculaires est nécessaire. L’étiologie des ATN est complexe et implique des facteurs génétiques et environnementaux. La supplémentation en acide folique est reconnue pour diminuer les risques de développer une ATN de 50-70% et cette diminution varie en fonction du début de la supplémentation et de l’origine démographique. Les gènes impliqués dans les ATN sont largement inconnus. Les études génétiques sur les ATN chez l’humain se sont concentrées sur les gènes de la voie métabolique des folates du à leur rôle protecteur dans les ATN et les gènes candidats inférés des souris modèles. Ces derniers ont montré une forte association entre la voie non-canonique Wnt/polarité cellulaire planaire (PCP) et les ATN. Le gène Protein Tyrosine Kinase 7 est un membre de cette voie qui cause l’ATN sévère de la craniorachischisis chez les souris mutantes. Ptk7 interagit génétiquement avec Vangl2 (un autre gène de la voie PCP), où les doubles hétérozygotes montrent une spina bifida. Ces données font de PTK7 comme un excellent candidat pour les ATN chez l’humain. Nous avons re-séquencé la région codante et les jonctions intron-exon de ce gène dans une cohorte de 473 patients atteints de plusieurs types d’ATN. Nous avons identifié 6 mutations rares (fréquence allélique <1%) faux-sens présentes chez 1.1% de notre cohorte, dont 3 sont absentes dans les bases de données publiques. Une variante, p.Gly348Ser, a agi comme un allèle hypermorphique lorsqu'elle est surexprimée dans le modèle de poisson zèbre. Nos résultats impliquent la mutation de PTK7 comme un facteur de risque pour les ATN et supporte l'idée d'un rôle pathogène de la signalisation PCP dans ces malformations.
Resumo:
Neural tube defects (NTDs) are malformations of the developing brain and spinal cord; the most common are anencephaly and spina bifida. Evidence from many populations suggests that 50% of NTDs can be prevented through daily consumption of folic acid. A recent study has reported that folic acid may not protect populations of Mexican descent. This finding has serious implications for women living along the US-Mexico border. Not only is risk high in these Mexican American women compared with other US women; they also differ markedly in supplemental folic acid and dietary folate consumption, and in NTD-related risks (e.g., obesity, diabetes). This case-control study investigated whether folic acid supplements and dietary folate reduces NTDs in Mexican Americans. Cases included liveborn, stillborn, electively and spontaneously aborted NTD-affected fetuses and infants occurring in the 14-county Texas-Mexico border. Controls were randomly selected from unaffected live births, frequency matched to cases by hospital and year. An in-person interview of 110 case and 113 control mothers solicited data on folic acid supplements, dietary folate, and other covariates. Consumption of folic acid-containing vitamins before conception was only 5% for both case and control women. Taking vitamins the trimester before conception had no apparent effect, after adjusting for covariates [odds ratio (OR) = 1.0, 95% confidence interval (CI) = 0.3–3.4]. Combining folate from vitamins and diet showed a 20% risk reduction for women consuming at least 400 μg of folate daily [OR = 0.8, 95% CI = 0.5–1.5]; however, this estimate is statistically indistinguishable from the null. Although consistent with an inherent ineffectiveness of supplemental folic acid, that so few women consumed multivitamins during the critical time severely limited the assessment of folic acid in this population. A reduced folate response in Mexican descent women may be due to a genetic heterogeneity for metabolizing folate. Alternatively, folate intakes may be insufficient to overcome other underlying risk factors. In conclusion, determining whether folic acid reduces NTD risk in Mexican American women requires further study in populations with higher folic acid exposures. Meanwhile, we should pursue all recommended prevention strategies to reduce risk, including motivating Mexican American women of childbearing age to take folic acid routinely. ^
Resumo:
In June 1995 a case-control study was initiated by the Texas Department of Health among Mexican American women residing in the fourteen counties of the Texas-Mexico border. Case-women had carried infants with neural tube defect. Control-women had given birth to infants without neural tube defects. The case-control protocol included a general questionnaire which elicited information regarding illnesses experienced and antibiotics taken from three months prior to conception to three months after conception. An assessment of the associations between periconceptional diarrhea and the risk of neural tube defects indicated that the unadjusted association of diarrhea and risk of neural tube defect was significant (OR = 3.3, CI = 1.4–7.6). The unadjusted association of use of oral antimicrobials and risk of neural tube defect was also significant (OR = 3.4, CI = 1.6–7.3). These associations persisted among women who had no fever during the periconceptional period and were present irrespective of folate intake. Diarrhea was associated with an increased risk of NTD independent of use of antimicrobials. The converse was also true; antimicrobials were associated with an increased risk of NTD independent of diarrhea. Further research regarding these potentially modifiable risk factors is warranted. Replication of these findings could result in interventions in addition to folate supplementation. ^
Resumo:
In 1996, the Food and Drug Administration (FDA) mandated that beginning in January 1998, flour and other enriched grain products be fortified with 140 μg of folic acid per 100 g of grain to prevent neural tube defects (NTDs) that occur in approximately 1 in 1,000 pregnancies in the United States (U.S.). Although this program has demonstrated important public health effects, it is argued that current fortification levels may not be enough to prevent all folic acid-preventable NTD cases. This study reviews published literature, on folic acid fortification in the U.S. and countries with mandatory folic acid fortification programs reported after 1992 and through January 2008. Published studies are evaluated to determine if the current level of folic acid fortification in the U.S. is adequate to prevent the most common forms of NTDs (spina bifida and anencephaly), particularly among overweight and obese women. ^ Although consistent improvement in blood folate levels of child bearing age women is reported in almost all studies, the RBC folate concentration has not reached the level associated with the most significant reduction of risk for NTDs (906 nmol/L); approximately half of the potentially preventable NTDs are prevented by fortification at the current U.S. level. Furthermore, the blood folate status of women in higher BMI categories (obese or overweight) has not improved as much as among women in lower BMI categories. Therefore, women classified as overweight or obese have not benefited from the preventive effects of folic acid fortification as much as normal or underweight women. ^ To reduce risk of folate preventable NTDs, especially in overweight and obese women, it may be necessary to increase the current level of folic acid fortification. However, further research is required to determine the optimal levels of fortification to achieve this goal without causing adverse health effects in the general population. ^
Resumo:
Recent studies have reported positive associations between maternal exposures to air pollutants and several adverse birth outcomes. However, there have been no assessments of the association between environmental hazardous air pollutants (HAPs) such as benzene, toluene, ethylbenzene, and xylene (BTEX) and neural tube defects (NTDs) a common and serious group of congenital malformations. Before examining this association, two important methodological questions must be addressed: (1) is maternal residential movement likely to result in exposure misclassification and (2) is it appropriate to lump defects of the neural tube, such as anencephaly and spina bifida, into a composite disease endpoint (i.e., NTDs). ^ Data from the National Birth Defects Prevention Study and Texas Birth Defects Registry were used to: (1) assess the extent to which change of residence may result in exposure misclassification when exposure is based on the address at delivery; (2) formally assess heterogeneity of the associations between known risk factors for NTDs, using polytomous logistic regression; and (3) conduct a case-control study assessing the association between ambient air levels of BTEX and the risk of NTDs among offspring. ^ Regarding maternal residential mobility, this study suggests address at delivery was not significantly different from using address at conception when assigning quartile of benzene exposure (OR 1.0, 95% CI 0.9, 1.3). On the question of effect heterogeneity among NTDs, the effect estimates for infant sex P = 0.017), maternal body mass index P = 0.016), and folate supplementation P = 0.050) were significantly different for anencephaly and spina bifida, suggesting it is often more appropriate to assess potential risk factors among subgroups of NTDs. For the main study question on the association between environmental HAPs and NTDs, mothers who have offspring with isolated spina bifida are 2.4 times likely to live in areas with the highest benzene levels (95% CI 1.1, 5.0). However, no other significant associations were observed.^ This project is the first to include not only an assessment of the relationship between environmental levels of BTEX and NTDs, but also two separate studies addressing important methodological issues associated with this question. Our results contribute to the growing body of evidence regarding air pollutant exposure and adverse birth outcomes. ^
Resumo:
Neural tube defects (NTDs) remain elevated in Hispanic women along the South Texas Border, despite folate supplementation and folate fortification of cereal products. Missmer et al. examined the relationships between fumonisins, a class of corn mycotoxin, and NTDs in Hispanic women who ate corn tortillas and found increased odds ratios with increasing exposure, as measured by serum sphinganine:sphingosine (sa:so) ratios. This study examined the interactions between categorized maternal serum folate levels and stratified sa:so ratios and the resultant odds ratios of NTDs, stratified by type (anencephaly and spina bifida). The hypothesis was that the above normal folate category would have lower odds ratios of NTDs at given sa:so ratio categories and that there would be a difference in odds ratio patterns for anencephaly and spina bifida. Methods. Data for 406 Hispanic women were obtained from the Missmer case-control study. Sa:so ratios were calculated and subjects were stratified into “below normal,” “normal,” and above normal range for folate. A logistic regression model was applied, controlling for BMI, serum B12, lab batch, and conception date. Results. While OR’s of NTDs increased for increasing sa:so ratios, OR’s for “above normal” folate were not decreased at any sa:so ratio and there was no statistically significant difference between OR’s of anencephaly and spina bifida. Conclusion. Folate does not appear to be protective against the potential teratogenic effect of fumonisins and did not differ in effect on OR’s of NTD by type. More research is necessary to determine the extent of fumonisin exposure in Hispanic women along the South Texas Border.^
Resumo:
The purpose of this study was to evaluate the adequacy of computerized vital records in Texas for conducting etiologic studies on neural tube defects (NTDs), using the revised and expanded National Centers for Health Statistics vital record forms introduced in Texas in 1989.^ Cases of NTDs (anencephaly and spina bifida) among Harris County (Houston) residents were identified from the computerized birth and death records for 1989-1991. The validity of the system was then measured against cases ascertained independently through medical records and death certificates. The computerized system performed poorly in its identification of NTDs, particularly for anencephaly, where the false positive rate was 80% with little or no improvement over the 3-year period. For both NTDs the sensitivity and predictive value positive of the tapes were somewhat higher for Hispanic than non-Hispanic mothers.^ Case control studies were conducted utilizing the tape set and the independently verified data set, using controls selected from the live birth tapes. Findings varied widely between the data sets. For example, the anencephaly odds ratio for Hispanic mothers (vs. non-Hispanic) was 1.91 (CI = 1.38-2.65) for the tape file, but 3.18 (CI = 1.81-5.58) for verified records. The odds ratio for diabetes was elevated for the tape set (OR = 3.33, CI = 1.67-6.66) but not for verified cases (OR = 1.09, CI = 0.24-4.96), among whom few mothers were diabetic. It was concluded that computerized tapes should not be solely relied on for NTD studies.^ Using the verified cases, Hispanic mother was associated with spina bifida, and Hispanic mother, teen mother, and previous pregnancy terminations were associated with anencephaly. Mother's birthplace, education, parity, and diabetes were not significant for either NTD.^ Stratified analyses revealed several notable examples of statistical interaction. For anencephaly, strong interaction was observed between Hispanic origin and trimester of first prenatal care.^ The prevalence was 3.8 per 10,000 live births for anencephaly and 2.0 for spina bifida (5.8 per 10,000 births for the combined categories). ^
Resumo:
F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects.
Resumo:
"8/04"--Colophon.
Resumo:
Background: In Portugal folic acid supplementation is recommended to start at least 2-3 months before conception for primary prevention of Neural Tube Defects. The aim of this study was to evaluate, within gestations with at least one congenital anomaly, possible association between maternal socio-demographic factors and the use of folic acid. Methods: Using data from the Portuguese national registry of congenital anomalies, for the 2004-2013 period, the association between folic acid use during pregnancy and maternal characteristics was studied using the chi-square test. Results: Considering all reported cases with congenital anomaly, the use of folic acid before conception was reported by 12.7% (n = 1233) of the women; 47.8% (n = 4623) started supplementation during the 1st trimester, 7% (n = 680) did not take folic acid and 32.5% (3143) of the records had no information on folic acid use. Women with professions that require higher academic differentiation started the use of supplements before pregnancy (p <0.001); women under 19 years old and with Arab ethnicity (p <0.001) did not take folic acid. Mothers with a previous pregnancy reported less use of folic acid (11.5% versus 14.7%) than mothers without a previous pregnancy (p <0.001). Conclusions: The results suggest some degree of association between maternal characteristics and use of folic acid. To increase the consumption of folic acid before pregnancy new measures are need to promote this primary prevention, among couples and health professionals. This study highlights some maternal characteristics and subgroups of mothers for who the measures should be reinforced.
Resumo:
The biological basis or mechanism whereby folate supplementation protects against heart and neural tube defects is unknown. It has been hypothesized that the amino acid homocysteine may be the teratogenic agent, since serum homocysteine increases in folate depletion; however, this hypothesis has not been tested. In this study, avian embryos were treated directly with d,l-homocysteine or with l-homocysteine thiolactone, and a dose response was established. Of embryos treated with 50 μl of the teratogenic dose (200 mM d,l-homocysteine or 100 mM l-homocysteine thiolactone) on incubation days 0, 1, and 2 and harvested at 53 h (stage 14), 27% showed neural tube defects. To determine the effect of the teratogenic dose on the process of heart septation, embryos were treated during incubation days 2, 3, and 4; then they were harvested at day 9 following the completion of septation. Of surviving embryos, 23% showed ventricular septal defects, and 11% showed neural tube defects. A high percentage of the day 9 embryos also showed a ventral closure defect. The teratogenic dose was shown to raise serum homocysteine to over 150 nmol/ml, compared with a normal level of about 10 nmol/ml. Folate supplementation kept the rise in serum homocysteine to ≈45 nmol/ml, and prevented the teratogenic effect. These results support the hypothesis that homocysteine per se causes dysmorphogenesis of the heart and neural tube, as well as of the ventral wall.